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Preface

Mathematics can be viewed as the philosophy of abstract objects. Indeed,
mathematics studies all sorts of useful objects, from numbers to multilevel
hierarchies and more general sets, along with the relations and functions as-
sociated with them.

The approach used in this book is to focus on the objects, rather than on the
functions that use them. After all, the objects are the main building bricks of
the language of mathematics. The C++ implementation of the objects makes
them far more understandable and easy to comprehend.

This book shows the strong connection between the theoretical nature of
mathematical objects and their practical C++ implementation. For exam-
ple, the theoretical principle of mathematical induction is used extensively to
define useful recursive C++ objects. Furthermore, algebraic and geometrical
objects are implemented in several different ways. Moreover, highly unstruc-
tured computational objects such as oriented and nonoriented graphs, two-
and three-dimensional meshes, and sparse stiffness and mass matrices are im-
plemented in short and well-debugged code segments.

The book is intended for undergraduate and graduate students in math,
applied math, computer science, and engineering who want to combine the
theoretical and practical aspects. Because the book assumes no background in
mathematics, computer science, or any other field, it can serve as a text book
in courses in discrete mathematics, computational physics, numerical methods
for PDEs, introduction to C for mathematicians and engineers, introduction
to C++ for mathematicians and engineers, and data structures.

Parts I–II introduce elementary mathematical objects, such as numbers
and geometrical objects. These parts are aimed at beginners, and can be
skipped by more experienced readers. Part III provides the required theoretical
background, including preliminary definitions, algorithms, and simple results.
Part IV teaches C from a mathematical point of view, with an emphasis on
recursion. Part V teaches C++ from a mathematical point of view, using
templates to implement vectors and linked lists. Part VI implements more
complex objects such as trees, graphs, and triangulations. Finally, Part VII
implements yet more advanced objects, such as 3-D meshes, polynomials of
two and three variables, sparse stiffness and mass matrices to linearize 3-D
problems, and 3-D splines.

XXVII
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XXVIII Preface

Each chapter ends with relevant exercises to help comprehend the material.
Fully explained solutions are available in the appendix. The original code is
also available at www.crcpress.com.

Yair Shapira
August 2008
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Part I

Numbers∗
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Numbers

The most elementary mathematical objects are, no doubt, the numbers, which
are accompanied by arithmetic operations such as addition, subtraction, mul-
tiplication, and division. In this book, however, we focus on the objects rather
than on their functions. Thus, the arithmetic operations between numbers, as
well as their other functions, are only presented to characterize the numbers,
and shed light about their nature as mathematical objects.

In this part, we discuss five kinds of numbers. We start with the natural
numbers, which are defined recursively by mathematical induction. Then, we
also introduce the negative counterparts of the natural numbers to produce the
set of the integer numbers. Then, we proceed to rational numbers, which are
fractions of integer numbers. Then, we proceed to irrational numbers, which
can be viewed as limits of sequences of rational numbers. Finally, we discuss
complex numbers, which are characterized by an extended interpretation of
the arithmetic operations that act upon them.

The convention used throughout the book is that mathematical symbols
that are quoted from formulas and explained in the text can be placed in
single quotation marks (as in ’+’), whereas longer mathematical terms that
contain more than one character are paced in double quotation marks (as in
”x + y”).
∗This part is for beginners, and can be skipped by more experienced readers.
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Chapter 1

Natural Numbers

The most elementary mathematical objects are, no doubt, the natural num-
bers. In this chapter, we use mathematical induction to construct the natural
numbers in the first place. Thanks to this inductive (or recursive) nature, el-
ementary arithmetic operations such as addition and multiplication can also
be defined recursively. The conclusion is, thus, that the sum of two natural
numbers is a natural number as well, and that the product of two natural num-
bers is a natural number as well. In other words, the set of natural numbers
is closed under addition and multiplication.

Furthermore, we provide recursive algorithms to obtain the decimal and
binary representations of natural numbers. Finally, we present recursive algo-
rithms to have the factorization of a natural number as a product of its prime
factors and to calculate the greatest common divisor and the least common
multiple of two natural numbers.

1.1 The Need for Natural Numbers

Since the dawn of civilization, people had the need to count. In agricultural
societies, they had to count fruits, vegetables, and bags of wheat. In shepherd
societies, they had to count sheep and cattle. When weight units have been
introduced, they also started to count pounds of meat and litters of milk.
Furthermore, when money has been introduced, they had to count coins of
silver and gold. Thus, counting has served an essential role in trade, and
thereby in the development of human civilization.

1.2 Mathematical Induction

The natural numbers start from 1, and then increase by 1 again and again.
In other words, the set of natural numbers is

1, 2, 3, 4, . . .

5
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6 CHAPTER 1. NATURAL NUMBERS

The notation ”. . .”, however, is not very clear. Until where should this list of
natural numbers go on? Does it have an end at all?

A more precise formulation of the natural numbers uses mathematical in-
duction. In mathematical induction, the first mathematical object is first con-
structed manually:

1 is a natural number.

Then, the induction rule is declared to produce the next natural number from
an existing one:

if n is an existing natural number, then n + 1 is a natural number as well.

(It is assumed that we know how to add 1 to an existing natural number to
obtain the next item in the list of natural numbers.) This means that 2, 3, 4, . . .
are only short names for the natural numbers defined recursively as follows:

2 ≡ 1 + 1
3 ≡ 2 + 1
4 ≡ 3 + 1

and so on.

1.3 Unboundedness

The mathematical induction allows to produce arbitrarily large natural
numbers by starting from 1 and adding 1 sufficiently many times. Thus, the
set of natural numbers is unbounded: there is no “greatest” natural num-
ber. Indeed, if N were the greatest natural number, then we could always use
mathematical induction to construct the yet greater natural number N +1. As
a conclusion, no such N exists, and the set of natural numbers is unbounded.

In the above proof, we have used the method of proof known as proof by
contradiction: we have assumed that our assertion was false and showed that
this would necessarily lead to a contradiction. The conclusion is, therefore,
that our original assertion must be indeed true, and that there is indeed no
“greatest” natural number. This method of proof is used often in Euclidean
geometry below.

1.4 Infinity

We saw that the set of natural numbers is unbounded. Does this necessarily
mean that it is also infinite? The answer is, of course, yes. To prove this, we
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1.5. ADDING NATURAL NUMBERS 7

could again use the method of proof by contradiction. Indeed, if the set of
natural numbers were finite, then we could use the maximal number in it as
the “greatest” natural number, in violation of the unboundedness of the set
of the natural numbers established above. The conclusion must therefore be
that the set of natural numbers must be infinite as well.

The concept of infinity is difficult to comprehend. In fact, it is easier to
understand positive statements such as “there is an end” rather than negative
statements such as “there is no end.” This is why, later on in this book, we
need to introduce a special axiom about the existence of an infinite set.

1.5 Adding Natural Numbers

Mathematical induction helps us not only to construct the natural numbers
in the first place, but also to define arithmetic operations between them. This
is the theory of Peano [1].

Given a natural number n, we assumed above that we know how to add
1 to it. Indeed, this is done by the mathematical induction, which produces
n + 1 as a legitimate natural number as well.

Still, can we add another natural number, m, to n? This is easy when m is
small, say m = 4:

n + m = n + (1 + 1 + 1 + 1) = (((n + 1) + 1) + 1) + 1,

where the numbers in the parentheses in the right-hand side are easily pro-
duced by the original mathematical induction. But what happens when m is
very large? Who could guarantee that n + m can always be calculated and
produce a legitimate natural number?

Fortunately, mathematical induction can help not only in the original defini-
tion of mathematical objects but also in arithmetic operations between them.
Indeed, assume that we already know to add the smaller number m− 1 to n.
Then, we could use this knowledge to add m to n as well:

n + m = n + ((m− 1) + 1) = (n + (m− 1)) + 1.

In this right-hand side, n+(m−1) is first calculated using our assumption (the
induction hypothesis), and then 1 is added to it using the original induction
to produce the next natural number.
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8 CHAPTER 1. NATURAL NUMBERS

1.6 Recursion

In practice, however, we don’t know how to add m − 1 to n. We must do
this by assuming that we know how to add a yet smaller number, m − 2, to
n:

n + (m− 1) = n + ((m− 2) + 1) = (n + (m− 2)) + 1.

This is called recursion: m is added to n using a simpler operation: adding
m−1 to n. In turn, m−1 is added to n using a yet simpler operation: adding
m− 2 to n. Similarly, m− 2 is added to n using the addition of m− 3 to n,
and so on, until 2 is added to n using the addition of 1 to n, which is well
known from the original induction that produces the natural numbers. This
recursion is illustrated schematically in the addition table in Figure 1.1.

1
2
3
4

1 2 3 4 m

n

2 3 4 5
3
4
5

4 5 6
5
6

6
7

7
8

FIGURE 1.1: The addition table. Each subsquare contains the result n + m
where n is the row number and m is the column number of the subsquare.

1.7 The Addition Function

The addition operation may be viewed as a function: a “black-box” machine,
which uses one or more inputs to produce a single, uniquely-defined output.
In our case, the ’+’ function uses the inputs n and m to produce the unique
result n + m using the above (recursive) list of instructions, or algorithm.

The addition function is illustrated schematically in Figure 1.2. As a matter
of fact, the output n + m is written in the appropriate subsquare in Figure
1.1, in the nth row and mth column.
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1.9. MULTIPLYING NATURAL NUMBERS 9

-

-

-

m

n

n + m
+

FIGURE 1.2: The addition function uses the inputs n and m to produce the
output n + m.

1.8 Stack of Calls

The sum n + m cannot be calculated directly by a single application (or
call) of the addition function ’+’. Before, one must use a recursive application
(or call) of the addition function with the smaller inputs (or arguments) n
and m− 1. Thus, the original call of the addition function to calculate n + m
must be placed in an abstract stack until n + (m− 1) is calculated. Once this
is done, the original call is taken back out of the stack, and is calculated as

n + m = (n + (m− 1)) + 1.

Unfortunately, n + (m− 1) also cannot be calculated directly. Therefore, it
must also be placed in the stack, on top of the original call. Only once another
recursive call to calculate n + (m − 2) is carried out, it can be taken out of
the stack and calculated as

n + (m− 1) = (n + (m− 2)) + 1.

Thus, the recursive calls to the addition function ’+’ are “pushed” one on
top of the previous one in the stack (Figure 1.3). Once the stack is full of
recursive calls and the top (mth) call needs only to calculate n + 1, the calls
“pop” back one-by-one from the stack, and each in turn is calculated using
the previous calculation.

1.9 Multiplying Natural Numbers

Multiplying a natural number n by another natural number m is also done
by mathematical induction. Indeed, when m = 1, the result is clearly n·1 = n.
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10 CHAPTER 1. NATURAL NUMBERS

n + m
n + (m− 1)
n + (m− 2)
n + (m− 3)
· · ·

n + 3
n + 2
n + 1

FIGURE 1.3: The stack used for adding n and m. The original call n + m is
pushed first, and the recursive calls are pushed one by one on top of it.

Furthermore, assume that we know how to calculate the product n(m − 1).
Then, we could use this knowledge to calculate the required result

nm = n(m− 1) + n.

In practice, the calculation of n(m− 1) is done recursively by

n(m− 1) = n(m− 2) + n.

The right-hand side is calculated by yet another recursive call to the multi-
plication function ’·’, and so on, until the final call to calculate

n · 2 = n · 1 + n.

The calls are placed one on top of the previous one (Figure 1.4), and then
“pop” back one by one from the stack, each calculated and used to calculate
the next one. This produces the nth row in the multiplication table in Figure
1.5.

nm
n(m− 1)
n(m− 2)
n(m− 3)
· · ·
3n
2n
n

FIGURE 1.4: The stack used for multiplying n by m. The original call nm is
pushed first, and the recursive calls are pushed one by one on top of it.

The multiplication function ’·’ accepts two inputs (or arguments), to pro-
duce the output (or result) nm. This is illustrated schematically in Figure
1.6.
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1
2
3
4

1 2 3 4 m

n

1 2 3 4
2
3
4

4 6 8
6
8

9
12

12
16

FIGURE 1.5: The multiplication table. Each subsquare contains the result
nm where n is the row number and m is the column number of the subsquare.

-

-

-

m

n

nm
·

FIGURE 1.6: The multiplication function uses the inputs n and m to
produce the output nm.

1.10 One and Zero

The smallest natural number, one (1), is considered as the unit number for
the multiplication function in the sense that it satisfies

n · 1 = n

for every natural number n. In some contexts, however, the yet smaller number
zero (0) is also considered as a natural number, and serves as the unit number
for the addition function in the sense that it satisfies

n + 0 = n

for every natural number n. In fact, zero has a special role in the representation
of a natural number in the decimal and binary forms below.
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12 CHAPTER 1. NATURAL NUMBERS

1.11 Decimal Representation

In the decimal representation, a natural number n is represented using the
ten digits

0, 1, 2, 3, 4, 5, 6, 7, 8, 9,

which stand for the ten smallest natural numbers (from zero to nine). More
precisely, n is represented as a sequence of, say, k + 1 digits

n = akak−1 . . . a2a1a0,

where a0, a1, . . . , ak are the digits (numbers between 0 and 9) used in the
expansion of n in powers of 10:

n = a0 + a1 · 10 + a2102 + a3103 + · · ·+ ak−110k−1 + ak10k =
k∑

i=0

ai10i.

In other words, both the value and the position of the digit ai in the sequence
of digits determines its contribution to n: ai10i. The least significant digit, a0,
contributes a0 only, whereas the most significant digit, ak, contributes ak10k.
Below we’ll see that this representation is indeed unique.

In order to obtain the decimal representation, we need two more arithmetic
operations on natural numbers, involving division with residual (or division
with remainder). More precisely, if n and m are two natural numbers satisfying
n > m > 0, then n/m is the result of dividing n by m with residual, and n%m
is that residual (or remainder). For example, 12/10 = 1, and 12%10 = 2. With
these operations, the decimal representation of a natural number n, denoted
by ”decimal(n)”, is obtained recursively as follows.

Algorithm 1.1 1. If n ≤ 9, then

decimal(n) = n.

2. If, on the other hand, n > 9, then

decimal(n) = decimal(n/10) n%10.

In other words, if n is a digit between 0 and 9, then its decimal representation
is just that digit. Otherwise, the last digit in the decimal representation of n,
a0 (the less significant digit on the far right), is n%10, and the digits preceding
it on the left are obtained from a recursive application of the above algorithm
to obtain decimal(n/10) rather than decimal(n). This recursive call is pushed
into the stack of calls on top of the original call (Figure 1.7). The calculation of
decimal(n/10) must use yet another recursive call to decimal(n/100), which
is also pushed in the stack on top of the previous two calls. The process
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1.12. BINARY REPRESENTATION 13

continues until the final call to calculate the most significant digit in n, ak, is
reached; this call uses no recursion, because it is made by Step 1 in the above
algorithm. Therefore, it can be used to calculate the top call currently in the
stack, and the rest of the calls also “pop” one by one from the stack, each
being used in the next one, until the bottom call (the original call decimal(n))
also pops out and is obtained as required.

decimal(n)
decimal(n/10)
decimal(n/100)
decimal(n/1000)
decimal(n/10000)
decimal(n/100000)

· · ·

FIGURE 1.7: The stack used for writing the decimal representation of n,
denoted by decimal(n). The original call decimal(n) is pushed first, and the

recursive calls are pushed one by one on top of it.

1.12 Binary Representation

In the decimal representation above, the natural number n is expanded as
a sum of powers of 10, e.g., 10i, with coefficients of the form ai, which are
just digits, that is, numbers between zero and nine. This means that 10 is the
base in the decimal representation.

The reason for using 10 as a base is probably that humans have ten fingers.
In the early days of the human civilization, people used to count with their
fingers. They could use their fingers to count to ten, but then they had to
remember that they had already counted one package of ten, and restart
using their fingers to count from eleven to twenty, to have two packages of
ten, and so on. This naturally leads to the decimal representation of natural
numbers, in which the number of packages of ten is placed in the second digit
from the right, and the number of extra units is presented by the last digit
on the far right.

Not everyone, however, has ten fingers. The computer, for example, has
only two “fingers”: zero, represented by a bit that is switched off, and one,
represented by a bit that is switched on. Indeed, the binary representation uses
base 2 rather than base 10 above. In particular, n is represented as a sum of
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14 CHAPTER 1. NATURAL NUMBERS

powers of 2 rather than 10, with different coefficients ai that can now be only
zero or one. These new coefficients (the digits in the binary representation of
n) are obtained uniquely by modifying the above algorithm to use 2 instead
of 10 and 1 instead of 9.

1.13 Prime Numbers

Particularly important natural numbers are the prime numbers. A natural
number p is prime if it is divisible only by itself and by one. In other words,
for every natural number k between 2 and p− 1,

p%k > 0.

The set of prime numbers is unbounded. This could be proved by contra-
diction. Indeed, assume that the set of prime numbers were bounded, say, by
P . Then, we could construct a yet greater prime number K > P , in violation
of the assumption that all the prime numbers are bounded by P . Indeed, K
could be the product of all the natural numbers up to and including P plus
one:

K ≡ 1 · 2 · 3 · . . . · (P − 1) · P + 1 =
(
ΠP

i=1i
)

+ 1.

Clearly, for every natural number n between 2 and P ,

K%n = 1.

In particular, this is true for every prime number n. This implies that K is
indeed prime, in violation of our assumption that P bounds all the prime
numbers. This implies that our assumption has been false, and no such P
could ever exist.

The unboundedness of the set of prime numbers implies that it is also
infinite. This can also be proved by contradiction: indeed, if it were finite, then
the maximal prime number in it could also serve as its bound, in violation of
the unboundedness of the set of prime numbers proved above.

1.14 Prime Factors

The prime numbers can be viewed as the bricks from which the natural
numbers are built. Indeed, every natural number can be written uniquely as
a product of prime numbers. This is called factorization by prime factors. For
example, 24 is factored as
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24 = 2 · 2 · 2 · 3 = 23 · 3.

Below we’ll not only give the proof that such a factorization exists, but ac-
tually construct it. Indeed, this is done in the following algorithm to factorize
the natural number n:

Algorithm 1.2 1. Let i > 1 be the smallest number that divides n in the
sense that n%i = 0.

2. Print: “i is a prime factor.”
3. If i < n, then apply this algorithm recursively to n/i rather than n.

This algorithm prints out the list of prime factors of n. For example, when
n = 24, it prints “2 is a prime factor” before being called recursively for
n = 24/2 = 12. Then, it again prints “2 is a prime factor” before being called
recursively for n = 12/2 = 6. Then, it prints again “2 is a prime factor”
before being called again for n = 6/2 = 3. Finally, it prints “3 is a prime
factor.” Thus, the result is that 2 appears three times in the factorization and
3 appears only once, as required.

1.15 Mathematical Induction in Proofs

Mathematical induction is also useful to prove properties associated with
natural numbers. In fact, in order to prove that a particular property holds
for every natural number, one should first prove that it holds for the smallest
relevant natural number (usually 1). Then, one should also prove that, given
a natural number n > 1, and assuming that the induction hypothesis holds,
that is, that the property holds for every natural number smaller than n, then
the property holds for n as well. This is the induction step, which allows us
to extend the property from the numbers smaller than n to n itself. Once it
is established that the induction step is indeed legitimate, the validity of the
property for every natural number n is established as well. Indeed, since it
is valid for 1, and since the induction step is legitimate, it is valid for 2 as
well. Furthermore, since it is valid for 1 and 2, and since the induction step
is legitimate, it is valid for 3 as well. The process continues this way, until
the argument that, since the property holds for 1, 2, . . . , n− 1, and since the
induction step is legitimate, the property holds for n as well.

Let us now use mathematical induction to prove that the above algorithm
indeed works in general. Indeed, if n = 2, then i in Step 1 of the algorithm
is also equal to 2, and the algorithm is complete in Step 1. Assume now that
n > 2, and assume also that the induction hypothesis holds, that is, that the
algorithm works for every input smaller than n. Let i be the smallest number
that divides n (in the sense that n%i = 0), as in Step 1. If i = n, then the
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16 CHAPTER 1. NATURAL NUMBERS

algorithm is complete in Step 1. If, on the other hand, i < n, then Step 2 in the
algorithm is invoked. Since n/i < n, and thanks to the induction hypothesis,
the recursive call in Step 2 (with n replaced by n/i), prints out the prime
factors of n/i, which are also the remaining prime factors of n.

1.16 The Greatest Common Divisor

The greatest common divisor of the natural numbers n and m, denoted by
GCD(n, m), is the greatest number that divides both n and m:

n%GCD(n, m) = m%GCD(n, m) = 0

([16]–[17]), where ’%’ stands for the ”mod” operation:

n%m = n mod m = n− (n/m)m

(where n ≥ m are any two natural numbers and n/m stads for integer division
with residual).

Here is the recursive algorithm to calculate GCD(n, m) (Euclid’s algo-
rithm). The algorithm assumes, without loss of generality, that n > m. (Oth-
erwise, just interchange the roles of n and m.)

Algorithm 1.3 1. If m divides n (n%m = 0), then the output is

GCD(n, m) = m.

2. If, on the other hand, n%m > 0, then the output is

GCD(n, m) = GCD(m,n%m).

(The right-hand side is calculated by a recursive call to the same algorithm,
with smaller arguments.)

For example, this is how the above algorithm is used to calculate the greatest
common divisor of 100 and 64:

GCD(100, 64) = GCD(64, 36)
= GCD(36, 28)
= GCD(28, 8)
= GCD(8, 4) = 4.

Let us now show that the above algorithm works in general. This is done by
induction on m (for every n). Indeed, when m = 1, the algorithm is complete
in Step 1, with the output
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GCD(n, 1) = 1.

When m > 1, assume that the induction hypothesis holds, that is, that the
algorithm works for every second argument smaller than m. Now, if n%m = 0,
then the algorithm is complete in Step 1. If, on the other hand, n%m > 0,
then n%m < m, so thanks to the induction hypothesis the algorithm can be
called recursively to calculate GCD(m,n%m). All that is now left to show is
that

GCD(n, m) = GCD(m,n%m).

To show this, let us first show that

GCD(n, m) ≥ GCD(m,n%m).

This follows from the fact that

n = (n/m)m + (n%m).

(Note that n/m is division with residual, so n > (n/m)m.) This implies that
GCD(m,n%m) divides both m and n, and therefore cannot be larger than
the greatest common divisor of m and n. Furthermore, let us also show that

GCD(n, m) ≤ GCD(m,n%m).

This follows from the fact that GCD(n, m) divides both m and n%m, hence
cannot be larger than the greatest common divisor of m and n%m. The con-
clusion is, thus, that

GCD(n, m) = GCD(m,n%m),

as required.

1.17 Least Common Multiple

The least common multiple of the natural numbers n and m, denoted by
LCM(n, m), is the smallest natural number divided by both n and m in the
sense that

LCM(n, m)%n = LCM(n, m)%m = 0.

In order to calculate LCM(n, m), let us first write both n and m as products
of their prime factors.

Let M be the set of prime factors of m, and N the set of prime factors of
n. Then, one can write

n = Πp∈Nplp and m = Πp∈Mpkp ,
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where ”p ∈M” means “p belongs to the set M ,” ”Πp∈Mp” means “the product
of all the members of the set M ,” and lp and kp denote the powers of the
corresponding prime factor p in the factorization of n and m, respectively. In
fact, one can also write

n = Πp∈M∪Nplp and m = Πp∈M∪Npkp ,

where M ∪N is the union of the sets M and N , lp = 0 if p 6∈ N , and kp = 0
if p 6∈M . With these factorizations, we clearly have

GCD(n, m) = Πp∈N∪Mpmin(lp,kp).

Furthermore, LCM(n, m) takes the form

LCM(n, m) = Πp∈N∪Mpmax(lp,kp) = Πp∈N∪Mplp+kp−min(lp,kp).

As a result, we have the formula

LCM(n, m) =
nm

GCD(n, m)
.

The greatest common divisor and the least common multiple are particularly
useful in the rational numbers studied below.

1.18 The Factorial Function

The addition and multiplication functions defined above take each two ar-
guments to produce the required output (Figures 1.2 and 1.6). Similarly, the
GCD and LCM functions also take two arguments each to produce their out-
puts. Other functions, however, may take only one input argument to produce
the output. One such function is the factorial function.

The factorial function takes an input argument n to produce the output,
denoted by n!. This output is defined recursively as follows:

n! ≡
{

1 if n = 0
(n− 1)! · n if n > 0.

The factorial function is useful in the sequel, particularly in the definition of
some irrational numbers below.

1.19 Exercises

1. What is a natural number?
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2. Use mathematical induction to define a natural number.
3. Use mathematical induction to show that the set of the natural numbers

is closed under addition in the sense that the sum of any two natural
numbers is a natural number as well.

4. Use mathematical induction to show that the set of the natural numbers
is closed under multiplication in the sense that the product of any two
natural numbers is a natural number as well.

5. Write the recursive algorithm that produces the sum of two arbitrarily
large natural numbers with arbitrarily long decimal representations.

6. Use mathematical induction on the length of the above decimal represen-
tations to show that the above algorithm indeed works and produces the
correct sum.

7. Write the recursive algorithm that produces the product of two arbitrarily
large natural numbers with arbitrarily long decimal representations.

8. Use mathematical induction on the length of the above decimal represen-
tations to show that the above algorithm indeed works and produces the
correct product.

9. Repeat the above exercises, only this time use the binary representation
instead of the decimal representation.

10. Write the algorithm that checks whether a given natural number is prime
or not.

11. Write the algorithm that finds all the prime numbers between 1 and n,
where n is an arbitrarily large natural number.

12. Write the recursive algorithm that finds the prime factors of a given nat-
ural number. Use mathematical induction to show that it indeed finds
the unique representation of the natural number as a product of prime
numbers.

13. Use mathematical induction to show that the representation of an arbi-
trarily large natural number as the product of its prime factors is indeed
unique.

14. Write the recursive algorithm that computes the GCD of two given natural
numbers. Use mathematical induction to show that it indeed works.

15. Write the recursive algorithm that computes the factorial of a given natu-
ral number. Use mathematical induction to show that it indeed produces
the correct answer.
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Chapter 2

Integer Numbers

Although they have several useful functions, the natural numbers are insuf-
ficient to describe the complex structures required in mathematics. In this
chapter, we extend the set of the natural numbers to a wider set, which con-
tains also negative numbers: the set of the integer numbers.

2.1 Negative Numbers

So far, we have only discussed nonnegative numbers, that is, numbers that
are greater than or at least equal to zero. Here we consider also the negative
numbers obtained by adding the minus sign ’−’ before the natural number.
In fact, −n is characterized as the number that solves the equation

x + n = 0.

Clearly, x cannot be a natural number. The only solution to the above equation
is x = −n.

As a matter of fact, it is sufficient to define the largest negative number
−1, because then every negative number of the form −n is obtained as the
product

−n = (−1) · n.

The number −1 is characterized as the number that satisfies

(−1) + 1 = 0
(−1) · 1 = −1
1 · (−1) = −1

(−1) · (−1) = 1.

Thus, multiplying by −1 can be interpreted as changing the sign of a number.
If it was positive, then it becomes negative, and if it was negative, then it
becomes positive. In any case, its absolute value remains unchanged:

| − n| = |n|,

21
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where the absolute value of a (positive or negative) number m is defined by

|m| ≡
{

m if m ≥ 0
−m if m < 0.

In the following, we give an example to show the importance of the negative
numbers in general and the largest negative number, −1, in particular.

2.2 The Prisoner Problem

The prisoner problem is as follows. A prisoner escapes from prison, and
the guards are after him. He arrives at a T junction, in which only one turn
leads to freedom, and the other leads back to prison (Figure 2.1). At the
junction, there are two people: one of them is trustworthy, and the other is a
pathological liar. Unfortunately, the prisoner doesn’t know who is who, and
he has no time to ask more than one question. Whom should he approach, and
what question should he ask in order to choose the correct turn that would
lead him to freedom?

6

6

r r
r

r r

prison

guards

prisoner

men

FIGURE 2.1: The prisoner problem: he can ask only one question in order to
know which way leads to freedom. One of the men is a liar.

At first glance, the problem seems unsolvable. Indeed, if the prisoner ap-
proached one of the two people at the junction and ask him which turn to
take, then he might tell him: “turn right.” Still, should the prisoner accept
this advice? After all, the man who answered could be the liar, so the right
turn might actually lead back to prison. This is indeed a dilemma!

Fortunately, the problem can be solved using a mathematical model, in
which a true answer is symboled by 1, and a lie is symboled by −1, because
it reverses the truth. Thus, the trustworthy man in the junction can be char-
acterized by 1, whereas the liar can be characterized by −1. Although the
prisoner doesn’t know who is who, he still knows that the product of these
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symbols is always
1 · (−1) = (−1) · 1 = −1,

regardless of the order in which the two inputs are multiplied. Thus, the
prisoner should ask a question that combines the minds of both men in the
junction. He should ask one of them: “if I have approached the other man
and asked him what turn to take, what would he say?” Now, the answer to
this question contains necessarily exactly one lie. Indeed, if the question is
directed to the liar, then he would reverse the answer that would be given by
the trustworthy man, resulting in a lie ((−1) · 1 = −1). If, on the other hand,
the question happens to be directed to the trustworthy man, then he would
honestly tell the answer of the liar, which also reverses the truth (1 · (−1) =
−1). In any case, the prisoner must not follow the answer, but take the other
direction to get safely to freedom.

2.3 The Integer Numbers

The set of integer numbers is the set of both natural numbers (including
zero) and their negative counterparts. Like the set of the natural numbers, the
set of the integer numbers is closed under addition and multiplication. Fur-
thermore, it has the extra advantage that it is also closed under subtraction.
In other words, the addition operation is reversible: adding an integer m can
be reversed by adding −m. Such a set is called a mathematical ring.

2.4 The Number Axis

To have some geometrical insight about the integer numbers, one can place
them on a horizontal axis (Figure 2.2). The zero lies in the middle of the
axis. To its right, the positive numbers 1, 2, 3, . . . form the positive part of the
number axis. To its left, the negative numbers −1,−2,−3, . . . form the nega-
tive part of the axis. The result is an infinite axis, with the integer numbers
ordered on it from −∞ (minus infinity) on the far left to ∞ (infinity) on the
far right.
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r r r r rrrrr
0 1 2 3 · · ·−1−2−3· · ·

FIGURE 2.2: The number axis that contains both the natural numbers to
the right of the zero and the negative integer numbers to the left of the zero.

2.5 Angles of Numbers

Here we give a geometric interpretation of integer numbers, which uses
the fact that a minus sign before an integer number reverses the direction
from which the number faces zero on the number axis. This interpretation
is particularly useful in the introduction of complex numbers later on in the
book.

rr -�

3−3
+

FIGURE 2.3: The arrow from zero to 3 produces a zero angle with the
positive part of the axis, and the arrow from zero to −3 produces an angle of 180

degrees with the positive part of the axis.

Each nonzero integer number n can be described by an arrow on the number
axis, leading from zero to n (Figure 2.3). If n is positive, then the arrow points
to the right, so it forms an angle of 0 degrees (a trivial angle) with the positive
part of the number axis. If, on the other hand, n is negative, then the arrow
from zero to it forms an angle of 180 degrees with the positive part of the
number axis.

Thus, an integer number n can be characterized by two functions: its ab-
solute value |n|, and the angle its arrow forms with the positive part of the
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number axis (0 degrees if n > 0 or 180 degrees if n < 0).
These functions can help one to interpret the multiplication of integer num-

bers from a geometrical point of view. For instance, let n and m be two given
integer numbers. Now, their product nm can also be interpreted in terms of
its two functions: its absolute value and the angle its arrow forms with the
positive part of the number axis. Clearly, its absolute value is

|nm| = |n| · |m|.

Furthermore, the angle associated with nm is obtained by adding the angles
associated with n and m. Indeed, if both n and m are positive, then they are
associated with the zero angle. Since the sum of the angles is, in this case, zero,
the angle associated with nm is zero too, which implies that nm is positive,
as required. Furthermore, if one of the numbers n and m is positive and the
other is negative, then the angle associated with the positive number is zero,
whereas the angle associated with the negative number is 180 degrees. The
sum of the angles is therefore 180 degrees, which implies that nm is negative,
as required. Finally, if n and m are both negative, then an angle of 180 degrees
is associated with both of them. The sum of angles is therefore 360 degrees
or zero, which implies that nm is positive, as required.

2.6 Exercises

1. What is an integer number?
2. Show that the set of the integer numbers is closed under addition in the

sense that the sum of any two integer numbers is an integer number as
well.

3. Show that the set of the integer numbers is closed under multiplication
in the sense that the product of any two integer numbers is an integer
number as well.

4. Show that, for any integer number n, there is a unique integer number m
satisfying n + m = 0. (m is called the negative of n, and denoted by −n.)

5. Show that 0 is the only integer number that is equal to its negative.
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Chapter 3

Rational Numbers

The set of integer numbers is a mathematical ring in the sense that the addi-
tion operation is reversible: adding m can be reversed by adding −m. In this
chapter, we extend it into a yet more complete set: the set of rational num-
bers. This set is not only a mathematical ring but also a mathematical field,
in which not only the addition operation but also the multiplication operation
is reversible: multiplying by m 6= 0 can be reversed by multiplying by 1/m.

3.1 Rational Numbers

So far, we have interpreted the symbol ’/’ as division with residual. This
means that, for every two integers n and m 6= 0, n/m is an integer. From
now on, however, we interpret the symbol ’/’ as division without residual, so
n/m may well be a fraction or a rational number. In particular, the rational
number 1/m is the unique solution of the equation

m · x = 1

(see [6]).
As we have seen above, the set of the integer numbers extends the set of

the natural numbers into a mathematical ring. Indeed, the set of the integer
numbers is the smallest set that contains all the natural numbers and is closed
not only under addition and multiplication, but also under subtraction: every
two integer numbers can be subtracted from each other to produce a result
that is an integer number as well. Similarly, the set of the rational numbers
extends the set of the integer numbers into a mathematical field. In fact, by
including also the fractions of the form n/m, the set of the rational numbers
is closed not only under addition, subtraction, and multiplication, but also
under division: each two rational numbers can be divided by each other, and
the result is a rational number as well.

27
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3.2 The Unique Form

The rational number n/m has infinitely many equal forms:

n

m
=

2n

2m
=

3n

3m
=

4n

4m
= · · · .

Therefore, it is important to agree on one particular form to present n/m

n/GCD(n, m)
m/GCD(n, m)

.

This form uses minimal numerator and denominator. In fact, in this form, the
greatest common divisor of the numerator and denominator is 1. Thus, this
is the unique form of the fraction n/m. In the sequel, it is assumed that the
rational numbers are in their unique form.

3.3 Adding Rational Numbers

Here we show that the set of rational numbers is indeed closed under addi-
tion and subtraction. Indeed, let n/m and l/k be two rational numbers. Then
we have

n

m
+

l

k
=

n(k/GCD(m, k))
m(k/GCD(m, k))

+
l(m/GCD(m, k))
k(m/GCD(m, k))

=
n(k/GCD(m, k)) + l(m/GCD(m, k))

LCM(m, k)
.

This calculation uses minimal numbers in both the numerator and the de-
nominator, to make the calculation as easy as possible. Below we also define
the product and ratio of two rational numbers.

3.4 Multiplying Rational Numbers

Furthermore, the set of rational numbers is also closed with respect to the
multiplication and division operations. Indeed, for every two rational numbers
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n/m and l/k, their product (using minimal numbers in both the numerator
and the denominator) is

n

m
· l

k
=

(n/GCD(n, k))(l/GCD(m, l))
(m/GCD(m, l))(k/GCD(n, k))

,

and their ratio is
n/m

l/k
=

n

m
· k

l
.

3.5 Periodic Decimal Representation

Some rational numbers have also a finite decimal representation. For exam-
ple,

1/4 = 0.25.

This representation can also be interpreted as a periodic infinite decimal rep-
resentation:

1/4 = 0.2500000 . . . = 0.2499999 . . .

Here the length of the period is 1, because there is only one digit that is
repeated periodically infinitely many times: 0 or 9.

Other rational numbers may have nontrivial periods. Consider, for example,
the fraction 1/7. Using the standard division algorithm, this fraction can be
presented as a periodic decimal fraction as follows:

0.142857
--------
1 | 7
10
7
-
30
28
--
20
14
--
60
56
--
40
35
--
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50
49
--
1

and the process repeats again and again. Thus, 1/7 can be written as the
periodic infinite decimal fraction

1/7 = 0.142857142857142857 . . . .

The six digits in the above period, 142857, are obtained one by one in
the division algorithm in a minimal residual approach. Indeed, the rational
number 1/7 is the solution of the equation

7x = 1.

In other words, 1/7 minimizes the residual

1− 7x.

This is why the first digit right after the decimal point is chosen to be 1; it
gives the minimal residual

1− 7 · 0.1 = 0.3.

Furthermore, the second digit after the decimal point is chosen to be 4, to
give the yet smaller residual

1− 7 · 0.14 = 0.02.

(Of course, one must avoid a digit larger than 4, to avoid a negative residual.)
The process continues, producing uniquely the six digits in the period, and
restarts all over again to produce the same period over and over again in
the decimal representation of 1/7. Thus, the above division algorithm not
only proves the existence of the periodic decimal representation of 1/7, but
actually produces it uniquely.

Just like 1/7, every rational number of the form n/m can be written as a
periodic infinite decimal fraction. Indeed, because there are only m natural
numbers smaller than m that can serve as residuals under the short horizontal
lines in the division algorithm illustrated above for 1/7, the process used in
the division algorithm must repeat itself at some point, leading to a periodic
infinite decimal fraction. (In the calculation of 1/7, for example, the process
repeats itself when the residual is again 1 at the bottom.) Thus, the length of
the period is at most m digits.

Below we show that the reverse is also true: every periodic infinite decimal
fraction is a rational number: it can be written in the form n/m for some
integer numbers n and m 6= 0. For this, however, we must first introduce the
concept of a series that converges to its limit.
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3.6 Diverging Series

A series is an object of the form

a1 + a2 + a3 + a4 + · · · ,

also denoted by
∞∑

n=1

an,

where the an’s are some numbers. The mth partial sum of the series (the sum
of the m first elements in the series) is denoted by

sm = a1 + a2 + a3 + · · ·+ am−1 + am =
m∑

n=1

an.

We say that the series diverges if the partial sum sm grows indefinitely when
m grows. In other words, given an arbitrarily large number N , one can choose
a sufficiently large natural number M such that

SM ≥ N

SM+1 ≥ N

SM+2 ≥ N

SM+3 ≥ N

and, in fact, sm ≥ N for every m ≥M . We denote this by

sm →m→∞ ∞

or
∞∑

n=1

an =∞.

Consider, for example, the constant series, in which

an = a

for every n ≥ 1, for some constant number a > 0. In this case, given an
arbitrarily large number N , one could choose M as large as M > N/a to
guarantee that, for every m ≥M ,

sm = ma ≥Ma > (N/a)a = N.

This implies that the constant series indeed diverges. In the following, we will
see a more interesting example of a diverging series.
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3.7 The Harmonic Series

The harmonic series is the series

1
2

+
1
3

+
1
4

+
1
5

+ · · · =
∞∑

n=2

1
n

.

To show that this series indeed diverges, we group the elements in it and
bound them from below by 1/2:

1
2

=
1
2

1
3

+
1
4
≥ 1

4
+

1
4

=
1
2

1
5

+
1
6

+
1
7

+
1
8
≥ 1

8
+

1
8

+
1
8

+
1
8
+ =

1
2
,

and so on. As a result, we have

∞∑
n=2

1
n

=
∞∑

k=1

2k∑
n=2k−1+1

1
n

≥
∞∑

k=1

2k∑
n=2k−1+1

1
2k

=
∞∑

k=1

2k−1 · 1
2k

=
∞∑

k=1

1
2

=∞.

3.8 Converging Series

We say that the series
∑

an converges to a number s if the partial sums sm

get arbitrarily close to s, or converge to s, in the sense that, for sufficiently
large m, |sm−s| is arbitrarily small. More precisely, given an arbitrarily small
number ε > 0, one can choose a natural number M so large that
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|sM − s| ≤ ε

|sM+1 − s| ≤ ε

|sM+2 − s| ≤ ε

and, in general,
|sm − s| ≤ ε

for every m ≥M . This is denoted by

sm →m→∞ s,

or
∞∑

n=1

an = s.

3.9 Finite Power Series

Consider the finite power series

1 + q + q2 + q3 + · · ·+ qm−1 =
m−1∑
n=0

qn

where m ≥ 1 is a given natural number, and q 6= 1 is a given parameter. Let
us use mathematical induction to prove that this sum is equal to

qm − 1
q − 1

.

Indeed, for m = 1, the above sum contains one term only, the first term 1.
Thus, we have

m−1∑
n=0

qn = 1 =
q1 − 1
q − 1

=
qm − 1
q − 1

,

as required.
Assume now that the induction hypothesis holds, that is, that the slightly

shorter power series that contains only m− 1 terms can be summed as

m−2∑
n=0

qn =
qm−1 − 1

q − 1

for some fixed natural number m ≥ 2. Then, the original series that contains
m terms can be split into two parts: the first m− 2 terms, and the final term:
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m−1∑
n=0

qn =

(
m−2∑
n=0

qn

)
+ qm−1

=
qm−1 − 1

q − 1
+ qm−1

=
qm−1 − 1 + qm−1(q − 1)

q − 1

=
qm − 1
q − 1

.

This completes the proof of the induction step. Thus, we have proved by
mathematical induction that

m−1∑
n=0

qn =
qm − 1
q − 1

for every natural number m ≥ 1.

3.10 Infinite Power Series

The infinite power series is the series

1 + q + q2 + q3 + · · · =
∞∑

n=0

qn.

Clearly, when q = 1, this is just the diverging constant series.
Let us now turn to the more interesting case q 6= 1. In this case, we have

from the previous section that the partial sum sm−1 is equal to

sm−1 = 1 + q + q2 + · · ·+ qm−1 =
m−1∑
n=0

qn =
qm − 1
q − 1

=
1− qm

1− q
.

By replacing m by m + 1, this can also be written as

sm =
1− qm+1

1− q
.

For q = −1, sm is either 0 or 1, so sm neither converges nor diverges, and,
hence, the power series

∑
qn neither converges nor diverges. Similarly, when

q < −1 sm and
∑

qn neither converge nor diverge. When q > 1, on the other
hand, the power series diverges:

sm →m→∞ ∞,
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or
∞∑

n=0

qn =∞.

Let us now turn to the more interesting case |q| < 1. In this case,

qm+1 →m→∞ 0,

so
sm →m→∞

1
1− q

,

or, in other words,
∞∑

n=0

qn =
1

1− q
.

In the following, we use this result in periodic infinite decimal fractions.

3.11 Periodic Decimal Fractions

In the above, we have shown that every rational number has a representation
as a periodic infinite decimal fraction. Here we show that the reverse is also
true: every periodic infinite decimal fraction is actually a rational number.
Thus, the set of rational numbers is actually the set of periodic infinite decimal
fractions.

Consider a periodic infinite decimal fraction of the form

0.a1a2 . . . aka1a2 . . . ak . . .

Here the period a1a2 . . . ak consists of the k digits a1, a2, . . . , ak, hence is equal
to

a110k−1 + a210k−2 + · · ·+ ak−1 · 10 + ak.

Thus, the periodic infinite decimal fraction is equal to

(
a110k−1 + a210k−2 + · · ·+ ak−1 · 10 + ak.

)
10−k

∞∑
n=0

(10−k)n

=
(
a110k−1 + a210k−2 + · · ·+ ak−1 · 10 + ak.

) 10−k

1− 10−k

=
a110k−1 + a210k−2 + · · ·+ ak−1 · 10 + ak.

10k − 1
,

which is indeed a rational number, as asserted.
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3.12 Exercises

1. What is a rational number?
2. Show that the set of the rational numbers is closed under addition in the

sense that the sum of any two rational numbers is a rational number as
well.

3. Show that the set of the rational numbers is closed under multiplication
in the sense that the product of any two rational numbers is a rational
number as well.

4. Show that, for any rational number q, there exists a unique rational num-
ber w satisfying

q + w = 0.

(w is called the negative of q, and is denoted by −q.)
5. Show that, for any rational number q 6= 0, there exists a unique rational

number w 6= 0 satisfying
qw = 1.

(w is called the reciprocal of q, and is denoted by 1/q or q−1.)
6. Show that there is no rational number q satisfying

q2 = 2.

7. Show that there is no rational number q satisfying

q2 = 3.

8. Show that there is no rational number q satisfying

q2 = p,

where p is a given prime number.
9. Show that there is no rational number q satisfying

qk = p,

where p is a given prime number and k is a given natural number.
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Chapter 4

Real Numbers

We have seen above that the set of the integer numbers is the smallest exten-
sion of the set of the natural numbers that is closed not only under addition
and multiplication but also under subtraction. Furthermore, the set of the
rational numbers is the smallest extension of the set of the integer numbers
that is closed not only under addition, multiplication, and subtraction, but
also under division (with no residual). In this chapter, we present the set of
the real numbers, which is the smallest extension of the set of the rational
numbers that is also closed under the limit process in the sense that the limit
of a converging sequence of real numbers is by itself a real number as well
(see [7]). Actually, we prove that the set of the real numbers consists of all
the infinite decimal fractions, periodic ones and nonperiodic ones alike.

4.1 The Square Root of 2

The ancient Greeks, although they had no idea about rational numbers,
did study ratios between edges of triangles. In particular, they knew that, in
a rectangle whose edges have the ratio 4 : 3 between them, the diagonal has
the ratios 5 : 4 and 5 : 3 with the edges. Indeed, from Pythagoras’ theorem,

52 = 42 + 32,

which implies that, if the lengths of the edges are four units and three units,
then the length of the diagonal must be five units (Figure 4.1). Thus, both the
edges and the diagonal can be measured in terms of a common length unit.

Surprisingly, this is no longer the case in a square (Figure 4.2). More ex-
plicitly, there is no common length unit with which one can measure both
the edge and the diagonal of a square. In other words, the ratio between the
diagonal and the edge of a square is not a rational number.

Assume that the length of the edges of the square is 1. From Pythagoras’
theorem, we then have that the square of the length of the diagonal is

12 + 12 = 2.

In other words, the length of the diagonal is the solution of the equation

37
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FIGURE 4.1: A right-angled triangle in which all the edges can be measured
by a common length unit.
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FIGURE 4.2: A right-angled triangle whose edges have no common length
unit. In other words, the lengths of the three edges cannot all be written as integer

multiples of any common length unit.

x2 = 2.

This solution is denoted by
√

2, or 21/2.
Let us prove by contradiction that

√
2 is not a rational number. Indeed, if

it were a rational number, then one could write
√

2 = n/m

for some nonzero integer numbers n and m. By taking the square of both sides
in the above equation, we would then have

2m2 = n2.

Consider now the prime factorization of both sides of this equation. In the
right-hand side, the prime factor 2 must appear an even number of times. In
the left-hand side, on the other hand, the prime factor 2 must appear an odd
number of times. This contradiction implies that our assumption is indeed
false, and that

√
2 cannot be written as a ratio n/m of two integer numbers,

so it is not a rational number: it is rather an irrational number.
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4.2 The Least-Upper-Bound Axiom

Below we’ll show that
√

2 indeed exists as a real number, namely, as a
limit of a sequence of rational numbers. For this, however, we need first to
present the least-upper-bound axiom. This axiom says that numbers that are
all bounded by a common bound also have a least upper bound.

The least-upper-bound axiom implies that a monotonically increasing se-
quence must either diverge or converge to its least upper bound. Indeed, let

s1 ≤ s2 ≤ s3 ≤ · · · ≤ sm−1 ≤ sm ≤ · · ·

be a monotonically increasing sequence. If it is unbounded, then for every
given (arbitrarily large) number N there is a sufficiently large number M
such that

sM > N.

Because the sequence is monotonically increasing, this also implies that

sm > N

for every m ≥M , which means that the sequence diverges.
If, on the other hand, the sequence is bounded, then, by the least-upper-

bound axiom, it has a least upper bound s. This means that, for a given
(arbitrarily small) number ε, there exists a sufficiently large number M for
which

0 ≤ s− sM ≤ ε.

Thanks to the fact that the sequence {sm} is monotonically increasing, this
implies that

|s− sm| ≤ ε

for every m ≥M . This implies that

sm →m→∞ s,

as asserted.
By multiplying all the elements in the set by −1, a bounded set becomes

bounded from below. Thus, the least-upper-bound axiom also has a reversed
form: numbers that are all bounded from below also have a greatest lower
bound. In particular, this implies that a monotonically decreasing sequence
of numbers that are all bounded from below converges to their greatest lower
bound.
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4.3 The Real Numbers

The set of the real numbers is the smallest extension of the set of the rational
numbers that is closed not only under addition, subtraction, multiplication,
and division, but also under the limit process: every limit of a sequence of real
numbers is by itself a real number as well.

Let us show that every decimal fraction of the form

0.a1a2a3 . . . =
∞∑

n=1

an10−n

is indeed a real number. For this, it is sufficient to show that it is indeed the
limit of a sequence of rational numbers. This is indeed true: it is the limit of the
partial sums sm of the above series. In fact, these sums are all bounded (e.g.,
by 1); furthermore, they form a monotonically increasing sequence. Therefore,
they converge to their least upper bound, s:

sm →m→∞ s,

also denoted as the sum of the infinite series:

s =
∞∑

n=1

an10−n.

So far, we have shown that every decimal fraction is indeed a real number
in the sense that it is indeed the limit of a sequence of rational numbers.
Furthermore, the reverse is also true: every real number, i.e., the limit s of a
sequence of the rational numbers sm, can be presented as a decimal fraction.
Indeed, if s is a finite decimal fraction, then it clearly has a finite decimal
representation. If, on the other hand, s is not a finite decimal number, then
for every (arbitrarily large) k, there is a yet larger number l > k such that

|s− d| ≥ 10−l

for every finite decimal fraction d with at most k digits behind the decimal
point. Now, let M be so large that, for every m ≥M ,

|sm − s| ≤ 10−l/2.

Clearly, these sm’s (with m ≥ M), as well as s itself, have the same k digits
behind the decimal point. By doing this for arbitrarily large k, one obtains
the infinite decimal representation of s uniquely.

We’ve therefore established not only that every decimal fraction is a real
number, but also that every real number can be represented as a decimal
fraction. Thus, the set of real numbers is equivalent to the set of (periodic
and nonperiodic) decimal fractions.
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4.4 Decimal Representation of
√

2

One can now ask: since
√

2 cannot be presented as a rational number of the
form n/m, where n and m are some integer numbers, does it exist at all? In
other words, does the equation

x2 = 2

have a solution at all?
In the following, we not only prove that the required solution exists, but

also provide an algorithm to construct its (infinite) decimal representation.
Of course, this representation must be nonperiodic, or the solution would be
rational, which it is not. Thus, the solution exists as a nonperiodic infinite
decimal fraction, or an irrational real number.

The algorithm to construct the decimal representation of
√

2 produces the
digits in it one by one in such a way that the residual

2− x2

is minimized. For example, the first digit in the decimal representation of
√

2
(the unit digit) must be 1, because it gives the minimal residual

2− 12 = 1.

Furthermore, the first digit right after the decimal point must be 4, because
it gives the minimal residual

2− (1.4)2 = 0.04.

Moreover, the next digit must be 1, because it gives the yet smaller residual

2− (1.41)2 = 0.0119.

Note that one must avoid a negative residual, which would mean that the
chosen digit is too large. Thus, the algorithm determines uniquely the digits
in the infinite decimal fraction.

Let us denote the digits produced in the above algorithm by

a0 = 1
a1 = 4
a2 = 1

and so on. Thus, the above algorithm actually produces the infinite series

a0 + a110−1 + a210−2 + · · · =
∞∑

n=0

an10−n.
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Define the partial sums

sm ≡
m∑

n=0

an10−n.

As we have seen above, this sequence converges to the real number s:

sm →m→∞ s,

or, in other words,

s =
∞∑

n=0

an10−n.

Does s satisfy the equation
s2 = 2?

Yes, it does. Indeed, the residuals

2− s2
m

are all greater than or equal to zero, so, by the least-upper-bound axiom,
they must also have a greatest lower bound d ≥ 0. Furthermore, because
these residuals are monotonically decreasing, d is also their limit:

2− s2
m →m→∞ d.

Let us now prove by contradiction that d = 0. Indeed, if d were positive,
then, there would exist a sufficiently large n, for which one could increase an

by 1 to obtain a residual smaller than the residual obtained in our algorithm,
in violation of the definition of the algorithm. Thus, we have established that
d = 0, and, hence,

2− s2 = lim
m→∞

(2− s2
m) = 0.

The conclusion is that √
2 = s

indeed exists as a real number, namely, as the limit of a sequence of the
rational numbers sm.

4.5 Irrational Numbers

In the above, we have shown that
√

2 cannot be written as the ratio n/m
of two integer numbers n and m, or, in other words, that

√
2 is irrational.

In a similar way, one can show that
√

p is irrational for every prime number
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p. Furthermore, one could also show that p1/k is irrational for every prime
number p and natural number k > 1. Moreover, for every two natural numbers
l > 1 and k > 1, l1/k is either a natural number or an irrational number.
Indeed, assume that l1/k was a rational number:

l1/k = n/m.

Then, we could take the kth power of both sides of the above equation to get

lmk = nk.

Now, in the right-hand side, every prime factor must appear a multiple of k
times. Therefore, the same must also hold in the left-hand side. As a conse-
quence, each prime factor of l must appear a multiple of k times in the prime
factorization of l. This means that l1/k must be a natural number.

Alternatively, the original assumption that l1/k can be written as a fraction
of the form n/m is false. This implies that l1/k is irrational. This is indeed
the case, e.g., when l is prime. Indeed, in this case the only prime factor of l
is l itself, and the prime factorization of l is just l = l1. Because 1 can never
be a multiple of k, our original assumption that l1/k is rational must be false.

4.6 Transcendental Numbers

The above irrational numbers are the solutions of equations of the form

xk = p,

where k > 1 is a natural number and p is a prime number. The solution p1/k

of such an algebraic equation is called an algebraic number.
There are, however, other irrational numbers, which do not solve any such

equation. These numbers are called transcendental numbers. Such a number
is π, the ratio between a circle and its diameter. Another such number is the
natural exponent e defined below.

4.7 The Natural Exponent

Suppose that your bank offers you to put your money in a certified deposit
(CD) for ten years under the following conditions. In each year, you’ll receive
an interest of 10%. Thus, in ten years, you’ll receive a total interest of 100%,
so you’ll double your money.
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This, however, is not a very good offer. After all, at the end of each year
you should already have the extra 10%, so in the next year you should have
received interest not only for your original money but also for the interest
accrued in the previous year. Thus, after ten years, the original sum that you
put in the CD should have multiplied not by 2 but actually by(

1 +
1
10

)10

> 2.

Actually, even this offer is not sufficiently good. The interest should actually
be accrued at the end of each month, so that in the next month you’ll receive
interest not only for your original money but also for the interest accrued in
the previous month. This way, at the end of the ten years, your original money
should actually be multiplied by(

1 +
1

120

)120

.

Some (more decent) banks give interest that is accrued daily. This way,
each day you receive interest not only for your original money but also for the
interest accrued in the previous day. In this case, at the end of the ten years
your money is multiplied by (

1 +
1

43800

)43800

.

Ideally, the bank should give you your interest in every (infinitely small)
moment, to accrue more interest in the next moment. Thus, at the end of the
ten years, your money should ideally be multiplied by

lim
n→∞

(
1 +

1
n

)n

= 2.718 . . . = e.

Here the natural exponent e is the limit of the sequence (1 + 1/n)n in the
sense that, for every given (arbitrarily small) number ε > 0, one can choose a
sufficiently large number N such that∣∣∣∣(1 +

1
n

)n

− e

∣∣∣∣ ≤ ε

for every n ≥ N . From the discussion in the previous sections, e is indeed a
real number.

It is now clear that the original offer of your bank to double your money
after ten years is not that good. The bank should actually offer to multiply
your original money by e = 2.718 . . . rather than just by 2. You should thus
consider other investment options, in which the interest accrues momentarily
rather than yearly or ten-yearly.
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The natural exponent e can also be present as an infinite sum:

e = 2.5 +
1
6

+
1
24

+
1

120
+ · · · = 1

0!
+

1
1!

+
1
2!

+
1
3!

+
1
4!

+ · · · =
∞∑

n=0

1
n!

.

4.8 Exercises

1. What is a limit of a given sequence of numbers?
2. Show that the limit of a given sequence of numbers is unique.
3. What is a real number?
4. Interpret a real number as the unique limit of a sequence of rational num-

bers.
5. Show that the set of the real numbers is closed under addition in the sense

that the sum of any two real numbers is a real number as well. (Hint: show
that this sum is the limit of a sequence of rational numbers.)

6. Show that the set of the real numbers is closed under multiplication in
the sense that the product of any two real numbers is a real number as
well. (Hint: show that this product is the limit of a sequence of rational
numbers.)

7. Show that the set of the real numbers is closed under the limit process in
the sense that the limit of a sequence of real numbers is a real number as
well. (Hint: show that this limit is also the limit of a sequence of rational
numbers.)

8. Show that, for any real number r, there exists a unique real number w
satisfying

r + w = 0.

(w is called the negative of r, and is denoted by −r.)
9. Show that, for any real number r 6= 0, there exists a unique real number

w 6= 0 satisfying
rw = 1.

(w is called the reciprocal of r, and is denoted by 1/r or r−1.)
10. Write the algorithm that finds a real number r satisfying

r2 = 2.

Show that this solution is unique.
11. Write the algorithm that finds a real number r satisfying

r2 = 3.

Show that this solution is unique.
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12. Write the algorithm that finds a real number r satisfying

r2 = p,

where p is a given prime number. Show that this solution is unique.
13. Write the algorithm that finds a real number r satisfying

rk = p,

where p is a given prime number and k is a given natural number. Show
that this solution is unique.
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Chapter 5

Complex Numbers

The set of the natural numbers, although closed under both addition and
multiplication, is incomplete because it contains no solution for the equation

x + n = 0,

where n is a positive natural number. This is why the set of the integer
numbers is introduced: it is the smallest extension of the set of the natural
numbers in which every equation of the above form has a solution.

Unfortunately, the set of the integer numbers is still incomplete in the sense
that it contains no solution for the equation

mx = 1,

where m > 1 is a natural number. This is why the set of the rational numbers
is introduced: it is the smallest extension of the set of the integer numbers in
which every equation of the above form has a solution.

natural numbers

∪
integer numbers

∪
x + n = 0

rational numbers

∪

mx = 1

real numbers

∪

xk = p

complex numbers x2 = −1

FIGURE 5.1: Hierarchy of sets of numbers. Each set contains the solution to
the equation to its right. The symbol ’⊂’ means inclusion of a set in a yet bigger

set. Thus, each set is a subset of the set in the next higher level.
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Still, the set of the rational numbers is also incomplete in the sense that it
has no solution for the nonlinear equation

xk = p,

where k > 1 is a natural number and p is a prime number. This is why the
set of the real numbers is introduced: it is the smallest extension of the set of
the rational numbers that contains the solution of each equation of the above
form and is still closed under the arithmetic operations.

Still, the set of the real numbers contains no solution to the equation

x2 = −1.

This problem is fixed in the set of the complex numbers, which is the smallest
extension of the set of the real numbers that contains a solution for the above
equation and is still closed under the arithmetic operations (Figure 5.1). In
fact, the set of the complex numbers is the smallest mathematical field in
which every algebraic equation can be solved (see [16]–[17]).

5.1 The Imaginary Number

The number axis illustrated in Figure 2.2 above originally contains only the
integer numbers. Now, however, we can place in it also the rational numbers
and even the real numbers. In fact, every real number x can be characterized
by the arrow (or vector) leading from zero in the middle of the number axis
to x. This is why the number axis is also called the real axis (Figure 5.2).

�

0 the real axisx

FIGURE 5.2: The real axis. The arrow leading from zero to the negative
number x produces an angle of 180 degrees (or π) with the positive part of the real

axis.

As illustrated in Figures 2.3 and 5.2, every positive number x is charac-
terized by the zero angle between the arrow leading from zero to it and the
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positive part of the real axis, whereas every negative number x < 0 is char-
acterized by the 180-degree angle between the arrow leading from zero to it
and the positive part of the real axis.

The angle associated with the product of two numbers is just the sum of
the angles associated with the numbers. This is why the angle associated with
x2 = x · x is always zero. Indeed, if x > 0, then the angle associated with it
is zero, so the angle associated with x2 is 0 + 0 = 0 as well. If, on the other
hand, x < 0, then the angle associated with it is of 180 degrees, so the angle
associated with x2 is of 360 degrees, which is again just the zero angle. Thus,
x2 ≥ 0 for every real number x.

The conclusion is, thus, that there is no real number x for which

x2 = −1.

Still, this equation does have a solution outside of the real axis!

6

0 the real axis−1

ir

FIGURE 5.3: The imaginary number i. The arrow leading from the origin to
i produces a right angle with the positive part of the real axis. This angle is

doubled in i2 to produce the required result −1.

Indeed, let us extend the real axis to the number plain (Figure 5.3). This
plane is based on two axes: the horizontal real axis and the vertical imaginary
axis. Let us mark the point 1 on the imaginary axis at distance 1 above the
origin. This point marks the number i – the imaginary number.

The imaginary number i is characterized by the absolute value 1 (its dis-
tance from the origin) and the right angle of 90 degrees (the angle between
the arrow leading from the origin to it and the positive part of the real axis).
Therefore, the square of i, i2, is characterized by its absolute value

|i2| = |i| · |i| = 1 · 1 = 1

and the angle between the arrow leading from the origin to it and the positive
part of the real axis:

90 + 90 = 180.

This means that
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i2 = −1,

or i is the solution to the original equation

x2 = −1.

5.2 The Number Plane

(0, 0)(origin)
the real axis

the imaginary axis

a

b(a, b)

Q
QQk

r

FIGURE 5.4: The complex plane. The complex number a + bi is represented
by the point (a, b).

So far, we have introduced only one number outside of the real axis: the
imaginary number i. However, in order to have a set that is closed under
multiplication, we must also introduce the numbers of the form bi for every
real number b. This means that the entire imaginary axis (the vertical axis in
Figure 5.4) must be included as well.

Furthermore, in order to have a set that is also closed under addition,
numbers of the form a+bi must also be included for every two real numbers a
and b. These numbers are represented by the points (a, b) in the plane in Figure
5.4, where a is the horizontal coordinate (the distance from the imaginary
axis) and b is the vertical coordinate (the distance from the real axis). This
produces the entire number plane, in which each number is complex: it is the
sum of a real number of the form a and an imaginary number of the form bi.
This is why this number plane is also called the complex plane.
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5.3 Sine and Cosine

The complex number a + bi, represented by the point (a, b) in the complex
plane in Figure 5.4, is characterized by two parameters: a, its real component,
and b, its imaginary component. Furthermore, it can also be represented by
two other parameters: r =

√
a2 + b2, its absolute value [the length of the arrow

leading from the origin (0,0) to (a,b)], and θ, the angle between that arrow
and the positive part of the real axis. The representation that uses these two
parameters is called the polar representation.

In fact, θ itself can be characterized by two possible functions:

cos(θ) =
a√

a2 + b2
,

or
sin(θ) =

b√
a2 + b2

.

Using these definitions, we have

a + bi = r(cos(θ) + sin(θ)i).

It is common to denote an angle of 180 degrees by π, because it is associated
with one half of the unit circle (the circle of radius 1), whose length is indeed
π. One half of this angle, the right angle, is denoted by π/2. With these
notations, we have

sin(0) = sin(π) = 0, cos(π/2) = cos(3π/2) = 0,

cos(0) = sin(π/2) = 1, and cos(π) = sin(3π/2) = −1.

As a matter of fact, because angles are defined only up to a multiple of 2π,
the angle 3π/2 is the same as the angle −π/2. In the following, we use the
arithmetic operations between complex numbers to get some more information
about the nature of the sine and cosine functions.

5.4 Adding Complex Numbers

The complex plane is closed under addition in the sense that the sum of
two complex numbers is a complex number as well. In fact, the addition of
two complex numbers is done coordinate by coordinate:

(a + bi) + (c + di) = (a + c) + (b + d)i.
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the real axis

the imaginary axis

(a, b) (c, d)

(a + c, b + d)

Q
QQk

�
��

�
�� rr r

FIGURE 5.5: Adding the complex numbers a + bi and c + di by the
parallelogram rule produces the result a + c + (b + d)i.

Geometrically, this means that the addition uses the parallelogram rule (Fig-
ure 5.5).

In particular, if we choose c = −a and d = −b, then we have

(a + bi) + (c + di) = 0.

This means that c + di is the negative of a + bi:

c + di = −(a + bi).

5.5 Multiplying Complex Numbers

So far, we only know how to multiply two real numbers and how to multiply
i by itself:

i2 = −1.

This means that the angle associated with i, the right angle, is doubled to
obtain the angle of 180 degrees (or the angle π) associated with −1. Fur-
thermore, the absolute value of −1 is the square of the absolute value of i:
1 · 1 = 1.

This multiplication is now extended linearly to the entire complex plane.
For example,

i(a + bi) = ai + bi2 = −b + ai.

Geometrically, this means that the point (a, b) has been rotated by a right
angle, the angle associated with i. This produces the new point (−b, a), which
has the same absolute value as the original point (a, b), only its angle is θ+π/2
rather than θ.

More generally, we have that the product of two general complex numbers
a + bi and c + di is

(a + bi)(c + di) = ac + bdi2 + adi + bci = (ac− bd) + (ad + bc)i.
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Geometrically, this means that the original point (c, d) has been rotated
by the angle θ, and the arrow leading to it has been stretched by factor
r =
√

a2 + b2. In fact, if the original complex numbers a + bi and c + di have
the polar representations (r, θ) and (q, φ), then their product has the polar
representation (rq, θ + φ). In particular, if we choose q = 1/r and φ = −θ,
then we have the reciprocal:

c + di =
1

a + bi
.

This reciprocal, whose polar representation is (1/r,−θ), is obtained by choos-
ing

c =
a

a2 + b2
and d =

−b

a2 + b2
.

In summary, the product of two complex numbers is a complex number as
well. This means that the complex plane is closed not only under addition
and subtraction but also under multiplication and division. This means that
the complex plane is actually a mathematical field. In fact, it is the smallest
mathematical field in which every algebraic equation, including

x2 = −1,

has a solution.

5.6 The Sine and Cosine Theorems

�

��

�
�
�
��

B
B

B
BM

φ
θ

cos(φ) + sin(φ)i
cos(θ) + sin(θ)icos(θ + φ) + sin(θ + φ)i

FIGURE 5.6: Multiplying the two complex numbers cos(θ) + sin(θ)i and
cos(φ) + sin(φ)i results in the complex number cos(θ + φ) + sin(θ + φ)i.

The unit circle is the set of complex numbers with absolute value 1, namely,
with distance 1 from the origin (Figure 5.6). Consider two complex numbers
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on this circle: cos(θ)+ sin(θ)i and cos(φ)+ sin(φ)i. The first of these numbers
produces the angle θ between the arrow leading from the origin to it and the
positive part of the real axis, whereas the second one produces the angle φ
between the arrow leading from the origin to it and the positive part of the
real axis. Thus, their product is the complex number on the unit circle that
produces the angle θ + φ between the arrow leading from the origin to it and
the positive part of the real axis (Figure 5.6).

This is a geometric observation; from an algebraic point of view, on the
other hand, this product can also be obtained by an arithmetic calculation,
using the linear nature of the multiplication operation:

cos(θ + φ) + sin(θ + φ)i
= (cos(θ) + sin(θ)i)(cos(φ) + sin(φ)i)
= (cos(θ) cos(φ)− sin(θ) sin(φ)) + (sin(θ) cos(φ) + cos(θ) sin(φ))i.

By comparing the corresponding real and imaginary parts in the above equa-
tion, we obtain the following two formulas:

cos(θ + φ) = cos(θ) cos(φ)− sin(θ) sin(φ),

known as the cosine theorem, and

sin(θ + φ) = sin(θ) cos(φ) + cos(θ) sin(φ),

known as the sine theorem.

5.7 Exercises

1. What is a complex number?
2. Interpret the arithmetic operations between complex numbers in geomet-

rical terms.
3. Let a 6= 0, b, and c be some given real parameters. Show that the equation

ax2 + bx + c = 0

has at least one and at most two complex solutions. Hint: rewrite

ax2 + bx + c = a(x + b/(2a))2 + (c− b2/(4a)).

4. Find a necessary and sufficient condition to guarantee that the above
solutions are also real.

5. Let z = a + ib be some complex number. Show that

|z|2 = zz̄.

© 2009 by Taylor and Francis Group, LLC



5.7. EXERCISES 55

6. Assume that z has the polar representation

z = r(cos(θ) + i · sin(θ)).

Show that its complex conjugate z̄ has the polar representation

z̄ = r(cos(−θ) + i · sin(−θ)).

Use the rules for multiplying complex numbers by their polar representa-
tions to obtain

zz̄ = r2.

7. Let the 2 by 2 matrix A be the table of four given numbers a1,1, a1,2, a2,1,
and a2,2:

A =
(

a1,1 a1,2

a2,1 a2,2

)
.

Similarly, let B be the 2× 2 matrix

B =
(

b1,1 b1,2

b2,1 b2,2

)
,

where b1,1, b1,2, b2,1, and b2,2 are four given numbers. Define the product
of matrices AB to be the 2× 2 matrix

AB =
(

a1,1b1,1 + a1,1b2,1 a1,1b1,2 + a1,2b2,2

a2,1b1,1 + a2,2b2,1 a2,1b1,2 + a2,2b2,2

)
.

Furthermore, let the complex number a+ ib be associated with the matrix

a + ib ∼
(

a −b
b a

)
.

Similarly, let the complex number c + id be associated with the matrix

c + id ∼
(

c −d
d c

)
.

Show that the product of complex numbers is associated with the product
of matrices:

(a + ib)(c + id) ∼
(

a −b
b a

)(
c −d
d c

)
.

8. Furthermore, for the above complex number a + ib define r and θ that
satisfy

r =
√

a2 + b2 and tan(θ) = a/b.

Show that the matrix associated with a + ib can also be written as(
a −b
b a

)
= r

(
cos(θ) − sin(θ)
sin(θ) cos(θ)

)
.

Conclude that
r(cos(θ) + i sin(θ)) = a + ib

is the polar representation of the original complex number a + ib.
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9. Let a+ib above be a fixed complex number, and c+id above be a complex
variable in the complex plane. Show that the multiplication by a + ib is a
linear operation on the complex plane.

10. Consider the particular case c = 1 and d = 0, in which c + id is repre-
sented in the complex plane by the horizontal standard unit vector (1, 0).
Show that the multiplication of this complex number by a+ ib on the left
amounts to rotating this vector by angle θ and then stretching it by factor
r.

11. Consider the particular case c = 0 and d = 1, in which c+id is represented
in the complex plane by the vertical standard unit vector (0, 1). Show that
the multiplication of this complex number by a + ib on the left amounts
to rotating this vector by angle θ and then stretching it by factor r.

12. Use the linearity property to show that the multiplication of any complex
number in the complex plane by a + ib on the left amounts to rotating it
by angle θ and then stretching it by factor r.

13. Conclude that a complex number can be viewed as a transformation of
the entire 2-dimensional plane, which is composed of a rotation followed
by stretching by a constant factor.
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Geometrical Objects∗
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Geometrical Objects

So far, we have dealt with numbers, along with the functions associated with
them: arithmetic operators that take two numbers to return the output (their
sum, product, etc.), and relations like ’<’, ’>’, and ’=’, which again take two
arguments to return either “true” (if the relations indeed holds) or “false”
(otherwise). Here we turn to another field in mathematics, which uses different
kind of objects: the field of geometry.

The mathematical objects used in geometry are no longer numbers but
rather pure geometrical objects: point, line, line segment, angle, circle, etc.
The relations between these objects are actually functions of two variables.
For example, the relations “the point lies on the line” takes two arguments,
some particular point and line, and return 1 (or true) if the point indeed lies
on the line or 0 (false) otherwise.

In Euclidean geometry, no numbers are used. The elementary objects, along
with some axioms associated with them that are accepted because they make
sense from a geometrical point of view, are used to prove theorems using
elementary logics. In analytic geometry, on the other hand, real numbers are
used to help define the geometric objects as sets of points, and help prove the
theorems associated with them.
∗This part is for beginners, and can be skipped by more experienced readers.

© 2009 by Taylor and Francis Group, LLC



Chapter 6

Euclidean Geometry

The theory of Euclidean geometry is completely independent of the numbers
defined and discussed above. Furthermore, it is also independent of any geo-
metric intuition: it is based on pure logics only [6] [12].

The theory assumes the existence of some abstract objects such as points,
lines, line segments, angles, and circles. It also assumes some relations between
these objects, such as “the point lies on the line” or “the line passes through
the point.” Still, these objects and relations don’t have to be interpreted
geometrically; they can be viewed as purely abstract concepts.

The axioms used in Euclidean geometry make sense from a geometrical
point of view. However, once they are accepted, they take a purely logical
form. This way, they can be used best to prove theorems.

The human geometrical intuition is often biased and inaccurate, hence can
lead to errors. Euclidean geometry avoids such errors by using abstract objects
and pure logics only.

6.1 Points and Lines

We have seen above that each real number can be represented as a point
on the real axis. In fact, the real axis is just the set of all the real numbers,
ordered in increasing order.

In Euclidean geometry, on the other hand, numbers are never used. In fact, a
point has no numerical or geometrical interpretation: it is merely an abstract
object. Moreover, a line doesn’t consist of points: it is merely an abstract
object as well. Still, points and lines may relate to each other: a point may lie
on a line, and a line may pass through a point. Two distinct lines may cross
each other at their unique joint point, or be parallel to each other if they have
no joint point.

There are two elementary axioms about the relations between lines and
points. The first one says that, if two distinct points are given, then there is
exactly one line that passes through both of them. The second one says that,
if a line and a point that doesn’t lie on it are given, then there is another line
that passes through the point and is also parallel to the original line. These
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axioms indeed make sense from a geometrical point of view. However, since
they are accepted, their geometric meaning is no longer material: they are
used as purely logical statements in the proofs of theorems.

6.2 Rays and Intervals

Let A and B be two distinct points on a particular line. Then, AB is the
ray that starts at A and goes towards B, passes it, and continues beyond it.
Furthermore, AB is the line segment leading from A to B on the original line.

6.3 Comparing Intervals

Although no numbers are used in Euclidean geometry to measure the size
of AB (or the distance from A to B), it can still be compared to the size of
other line segments. For example, if A′B′ is some other line segment, then
either AB > A′B′ or AB < A′B′ or AB = A′B′. For this, however, we first
need to know how line segments can be mapped.

6

A B

A′ B′B′′r

FIGURE 6.1: Mapping the line segment AB onto its image A′B′′. This
mapping implies that A′B′′ < A′B′.

A line segment of the form AB can be mapped onto the ray A′B′ using a
compass as follows (Figure 6.1). First, one should place one leg of the compass
at A and the other at B. This way, the length of AB is stored in the compass.
Then, one should place the main leg of the compass at A′, and draw an arc
that crosses A′B′ at a new point, say B′′. This way, we have

AB = A′B′′
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in the sense that the length of these line segments is the same.
The above mapping allows one to compare the lengths of the two original

line segments AB and A′B′. In fact, if the new point B′′ lies in between A′

and B′, then
AB = A′B′′ < A′B′.

If, on the other hand, B′ lies in between A′ and B′′, then

AB = A′B′′ > A′B′.

Finally, if B′′ coincides with B′, then

AB = A′B′′ = A′B′.

Thus, although in Euclidean geometry line segments don’t have any nu-
merical length, they can still be compared to each other to tell which one is
longer. Furthermore, the above mapping can also be used to compute the sum
of two line segments. In fact, the sum of two line segments is a line segment
into which both of the original line segments can be mapped disjointly with
no remainder. For example, the sum of line segments of the form AB and DE
can be computed by mapping DE onto the new line segment BC, which lies
on the ray AB and does not overlap with AB. This way, we have

AB + DE = AC.

6.4 Ratios between Intervals

As discussed above, in Euclidean geometry there is no length function that
assigns to each line segment a number to measure its length. Nevertheless, as
we’ll see below, it is still possible to compare not only lengths of line segments
but also the ratios (or proportions) of pairs of line segments.

Let AB and A′B′ be some given line segments. Since their length is un-
available, how can we define their ratio A′B′/AB? Fortunately, this can be
done by an algorithm in the spirit of Euclid’s algorithm for computing the
greatest common divisor of two natural numbers.

Let us illustrate how a ratio can be characterized by a sequence of integer
numbers. Suppose that we are interested in the ratio between a line segment
whose length is 7.5 units and a line segment whose length is one unit only.
Because the second line segment can be embedded seven times in the first one,
the first member in the sequence should be 7. Now, although the line segment
whose length is one unit cannot be embedded in the line segment remainder
(whose length is half a unit only), their roles may be interchanged: the line
segment remainder can be embedded twice in the line segment of one unit.
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To pay for this interchange, one should also assign a minus sign to the next
member in the sequence, −2.

Suppose now that the first line segment is of length 7.4 units rather than 7.5
units. In this case, one extra member must be added to the above sequence,
to count the number of times that the final line segment remainder, whose
length is 0.2 units, can be embedded in the previous line segment remainder,
whose length is 0.4 units. But the new ratio 7.4/1 must be smaller than the
old ratio 7.5/1, which implies that ∞ should be added as the final member in
the sequence corresponding to 7.5/1, to have

7.5
1
∼ {7,−2,∞} > {7,−2, 2,−∞} ∼ 7.4

1
,

where the inequality sign ’>’ between the sequences above is in terms of the
usual lexicographical order. In this order, comparing sequences is the same
as comparing their first members that are different from each other. Because
the third member in the first sequence above, ∞, is greater than the third
member in the second sequence, 2, the first sequence above is also greater
than the second sequence, implying that the first ratio, 7.5/1, is also greater
than the second one, 7.4/1, as indeed required.

The alternating signs used in the above sequences is particularly suitable
for comparing sequences using the lexicographical order. For example,

7.5
1
∼ {7,−2,∞} > {7,−4,∞} ∼ 7.25

1
,

as indeed required.
Let us give the above ideas a more precise formulation. Let ∞ be a symbol

that is greater than every integer number. Similarly, let −∞ be a symbol that
is less than every integer number. The ratio between A′B′, the line segment
numerator, and AB, the line segment denominator, is a sequence of symbols
that are either integer numbers or ±∞. More precisely, the sequence must be
either infinite or finite with its last member being∞ or −∞. In the following,
we also use the term “sequence to the power −1” to denote the sequence
obtained by reversing the signs of the members in the original sequence.

In the following algorithm, we assume that A′B′ ≥ AB. [Otherwise, we use
the definition

A′B′

AB
=
(

AB

A′B′

)−1

.]

Here is the recursive algorithm to obtain the required sequence.

Algorithm 6.1 1. If AB is the trivial line segment, that is, if A coincides
with B, then the sequence is just ∞ (the sequence with only one member,
∞).

2. Otherwise, map AB into A′B′ k + 1 times, so that

AB = A′A1 = A1A2 = A2A3 = · · · = Ak−1Ak = AkAk+1,
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where A1, A2, . . . , Ak, Ak+1 are the endpoints of the mapped line segment,
and k+1 is the smallest natural number for which Ak+1 lies outside A′B′.

3. The required sequence is

k,

(
AB

AkB′

)−1

,

that is, the sequence in which the first member is k, and the remain-
ing members are the members of the sequence AB/AkB′ with their signs
changed.

Note that, if the sequence produced by this algorithm is finite, then the fi-
nal line segment remainder (denoted by AkB′) used in the final recursive call
to the algorithm is trivial in the sense that Ak coincides with B′. Therefore,
the final recursive call uses the first rather than second step in the algorithm,
leading to its termination and to the member ±∞ at the end of the sequence.
Furthermore, the line segment remainder of the form AkB′ used in the re-
cursive call that precedes the final recursive call, on the other hand, can be
used as a common length unit for both AB and A′B′. (For example, a unit
of length 1 can serve as a common length unit for the edges of the triangle
in Figure 4.1.) Indeed, both AB and A′B′ can be viewed as multiples of that
line segment.

If, on the other hand, the above sequence is infinite, then there is no com-
mon length unit, as in Figure 4.2. In this case, the above algorithm never
terminates. Still, each particular member in the sequence can be computed in
a finite number of steps. Indeed, for every natural number n, the nth member
can be computed in n− 1 recursive calls to the algorithm.

Now, the comparison between two ratios, or two such sequences, is done in
the usual lexicographical order: a sequence is greater than another sequence
if, for some natural number n, the nth member in it is greater than the nth
member in the other sequence, whereas all the previous n − 1 members are
the same as in the other sequence. In particular, two ratios are the same if all
the members in their sequences are the same.

In the lexicographical order, there are no sequences between the sequence
{−1,∞} and the sequence {1,−∞}, so they can both be viewed as the same
sequence, denoted by the number 1:

{−1,∞} = {1,−∞} = 1.

Clearly, these sequences are obtained only when the line segments have the
same length:

AB = A′B′.

Thus, the equation
A′B′

AB
=

AB

A′B′ = 1

can be interpreted not only in the above sense but also in the usual sense.
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The above definition of a ratio allows one to find out which of two different
ratios is the greater one. Indeed, since they are different from each other, for
some natural number n the nth member in one sequence must be greater than
the nth member in the other sequence. The above algorithm can find these
members in n− 1 recursive calls and compare them to tell which ratio is the
greater one. If, on the other hand, the ratios are equal to each other, then we
can know this for sure only if they have finite sequences, because we can then
compare the corresponding members one by one and verify that each member
in one sequence is indeed the same as the corresponding member in the other
sequence. If, on the other hand, the sequences are infinite, then there is no
practical algorithm that can tell us for sure that the ratios are indeed equal
to each other. Indeed, since the above algorithm never terminates, one never
gets a final answer about whether or not the entire sequences are exactly the
same.

Still, even when one can never decide in finite time whether or not two ratios
are equal to each other, one can assume that this information is given from
some other source. Thus, it makes sense to assume a priori that the informa-
tion that two ratios are equal to each other is available. Such assumptions are
often made in the study of similar triangles below.

6.5 Angles

An angle is the region confined in between two rays of the form BC and
BA that share the same starting point B. This angle is vertexed at B, and is
denoted by ∠ABC. In this notation, the middle letter, B, denotes the vertex,
whereas the left and right letters, A and C, denote some points on the rays.

Note that the term “region” is used loosely above only to give some ge-
ometric intuition. In fact, it is never really used in the formal definition of
the angle ∠ABC. Indeed, ∠ABC can be obtained as a formal function of the
three points A, B (the vertex), and C and an extra binary variable to tell
which side of ∠ABC is relevant, because there are actually two angles that
can be denoted by ∠ABC, the sum of which is 360 degrees or 2π.

6.6 Comparing Angles

An angle can be mapped to another place in the plane using two compasses.
This is done as follows. Suppose that we want to map ∠ABC onto a new angle
that uses the new vertex B′ and the new ray B′C′, where B′ and C ′ are some
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given points. To do this, we use a compass to draw an arc around B that
crosses BC at C ′′ and BA at A′′.

Then, we open a second compass at the distance between C ′′ and A′′. Now,
we’ve got all the information about the angle stored in the compasses, and we
are therefore ready to draw the mapped angle. To this end, we use the first
compass to draw an arc around B′, which crosses B′C′ at the new point C ′′′.
Then, we use the second compass to draw an arc around C ′′′ so it crosses the
previous arc at the new point A′. The required mapped angle is, therefore,

∠A′B′C ′ = ∠ABC.

Note that in the above equation, the order of letters is important. The
middle letters, B and B′, mark the vertices of the original angle and the
mapped angle. The rest of the letters, on the other hand, are just any points
on the rays (Figure 6.2).
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FIGURE 6.2: The angle vertexed at B is mapped onto the angle vertexed at
B′ using one compass to store the distance BC′′ = BA′′ and another compass to

store the distance C′′A′′.
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FIGURE 6.3: The angle DEF is smaller than the angle ABC, because it can
be mapped onto the angle A′BC, which lies inside the angle ABC.

The above mapping allows one to compare two given angles ∠ABC and
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∠DEF to realize which angle is the greater one (Figure 6.3). For example,
one could map ∠DEF onto the vertex B and the ray BC, so that the EF is
mapped onto BC and ED is mapped onto a new ray BA′, so that there are
three possibilities: if BA′ lies within ∠ABC, then we have

∠DEF = ∠A′BC < ∠ABC.

If on the other hand, BA lies within ∠A′BC, then we have

∠ABC < ∠A′BC = ∠DEF.

Finally, if BA′ coincides with BA, then we have

∠ABC = ∠A′BC = ∠DEF.

Thus, although in Euclidean geometry angles don’t have any function to
specify their size numerically, they can still be compared to each other to
decide which angle is greater. This relation between angles will be used further
below.

The above mapping is also useful in computing the sum of two angles. In
fact, the sum of two angles of the form ∠ABC and ∠DEF is the new angle
∠A′BC obtained by mapping ∠DEF onto ∠A′BA in such a way that EF
coincides with BA and ED coincides with BA′ (Figure 6.4).
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FIGURE 6.4: The sum of the angle ABC and the angle DEF is obtained by
mapping the latter onto the new angle A′BA to produce the joint angle A′BC.

An angle of the form ∠ABC is called a straight angle if all the three points
A, B, and C lie on the same line. If the sum of two angles is a straight angle,
then we say that their sum is also equal to 180 degrees or π. We then say
that the two angles are supplementary to each other. If the two angles are
also equal to each other, then we also say that they are right angles, or equal
to 90 degrees or π/2.
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6.7 Corresponding and Alternate Angles

Let a and b be two distinct lines. Let O be a point on a, and Q a point on
b. From our original axiom, we know that there is exactly one line, say c, that
passes through both O and Q.
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b
Q

O
α β

γδ

α′ β′

γ′
δ′

a

c

FIGURE 6.5: Pairs of corresponding angles between the parallel lines a and
b: α = α′, β = β′, γ = γ′, and δ = δ′.

The line c produces with a four angles vertexed at O: α, β, γ, and δ (Figure
6.5). Similarly, c produces with b four corresponding angles vertexed at Q: α′,
β′, γ′, and δ′.

The vertical-angle theorem says that vertical angles are equal to each other,
because they are both supplementary to the same angle. For example,

α = π − β = γ and β = π − α = δ.

The corresponding-angle axiom says that, if a and b are parallel to each
other (a||b), then corresponding angles are equal to each other. In other words,
a||b implies that

α = α′, β = β′, γ = γ′, and δ = δ′.

The alternate-angle theorem says that, if a||b, then alternate angles are
equal to each other:

α = γ′, β = δ′, γ = α′, and δ = β′.

Indeed, this theorem follows from the corresponding-angle axiom and the
vertical-angle theorem. For example,

α = α′ = γ′ and δ = δ′ = β′.
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In the above, we have accepted the corresponding-angle axiom, and used
it to prove the alternate-angle theorem. However, we could also interchange
their roles: we could accept the alternate-angle theorem as an axiom, and use
it to prove the equality of corresponding angles:

α = γ = α′, β = δ = β′,

and so on. This means that not only the corresponding-angle axiom implies the
alternate-angle theorem, but also that an alternate-angle axiom would imply a
corresponding-angle theorem. In other words, the corresponding-angle axiom
is equivalent to the alternate-angle theorem.

It is common, though, to accept the corresponding-angle axiom, and use it
to prove the alternate-angle theorem and other theorems as well. In fact, in
the following we use it to prove also the reversed corresponding-angle theorem.

6.8 The Reversed Corresponding-Angle Theorem
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FIGURE 6.6: Proving the reversed corresponding-angle theorem by
contradiction: if a were not parallel to b, then one could draw another line a′ that

would be parallel to b.

The reversed corresponding-angle theorem says that, if corresponding angles
are equal to each other, then the lines a and b are necessarily parallel to
each other. In other words, γ = γ′ implies that a||b. This theorem can be
proved by contradiction. Indeed, assume that a and b were not parallel to
each other. Then, using our original axiom, there is another line, say a′, that
passes through O and is parallel to b (Figure 6.6). Let B be a point on the
right part of a′. From the corresponding-angle axiom, we have that
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∠BOQ = γ′.

Using our original assumption that γ = γ′, we therefore have that

∠BOQ = γ′ = γ.

But this contradicts our method of comparing angles, from which it is obvious
that

∠BOQ 6= γ.

Thus, our original assumption must have been false: a must indeed be parallel
to b, as asserted.

6.9 Parallel Lines – The Uniqueness Theorem

Our original axiom says that, given a line b and a point O outside it, there
exists a line a that passes through O and is also parallel to b. Here we show that
the uniqueness of this line also follows from the corresponding-angle axiom.

The uniqueness of a is actually a negative assertion: it means that there is
no other line, say a′, that also passes through O and is also parallel to b. A
negative statement is usually hard to prove in a direct way; could we possibly
check every hypothetic line a′ to verify that it is not parallel to b? Thus,
the best way to prove the uniqueness of a is by contradiction, because this
method introduces a new positive assumption, which can be easily denied: the
existence of a hypothetic second line, a′, with the same properties as a.
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FIGURE 6.7: Proving the uniqueness of the parallel line a by contradiction:
if it were not, then one could draw another line a′ that is parallel to b as well.

In a proof by contradiction, we assume momentarily that our assertion was
false, and seek a contradiction. Once a contradiction is established, we can
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safely conclude that our momentary assumption must have been false, so our
original assertion must indeed be true. In the present case, the momentary
assumption is that there is another line, say a′, that also passes through O
and is also parallel to b. The existence of such an a′ is a positive hypothesis,
which can be easily denied: indeed, if there were such an a′, then we could
draw the line c as in Figure 6.7, and use the corresponding-angle axiom to
have

γ = γ′ = ∠BOQ,

in violation of our method to compare angles, which clearly implies that

γ 6= ∠BOQ.

This contradiction implies that no such a′ could ever exist, as asserted.
In some texts, the uniqueness of a is also accepted as an axiom. In this case,

one could also accept the reversed corresponding-angle theorem as an axiom,
and use both of these axioms to prove the corresponding-angle axiom, so it
takes the status of a theorem rather than an axiom.
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FIGURE 6.8: Proving the corresponding-angle axiom by contradiction: if γ
were smaller than γ′, then one could draw another line a′ so that the new angle

BOQ is equal to γ′.

To prove the corresponding-angle axiom, let us show that, if a||b, then γ = γ′

in Figure 6.8. This is again proved by contradiction: assume momentarily that
this was false, that is, that γ 6= γ′. (Without loss of generality, assume that
γ < γ′.) Then, we could draw a line a′ in such a way that

∠BOQ = γ′

(Figure 6.8). But the reversed corresponding-angle theorem would then imply
that a′ is also parallel to b, in violation of the uniqueness axiom assumed above.
This necessarily leads to the conclusion that our momentary assumption was
false, so γ = γ′, as asserted.
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In summary, we have shown not only that the corresponding-angle axiom
implies both the uniqueness theorem and the reversed corresponding-angle
theorem, but also that it is implied by them. Thus, it is actually equivalent
to them. Still it is common to accept it as an axiom, whereas they take the
status of theorems.

6.10 Triangles

A triangle is based on three points (vertices), say A, B, and C, which do
not lie on the same line. These points are then connected to form the edges
of the triangle: AB, BC, and CA. The triangle is then denoted by 4ABC.

Note that the list of vertices in the triangle, A, B, and C, can be extended
periodically, so C is again followed by A. This is why the third edge of the
triangle is denoted by CA (rather than AC) to preserve this periodic order.
Furthermore, this periodic order induces the notations of the angles in the
triangle: ∠CAB, ∠ABC, and ∠BCA (Figure 6.9).

�
�
�
�
�
��@

@
@

@
@

@B

A

C

FIGURE 6.9: The triangle 4ABC with the interior angles vertexed at A, B,
and C.

Let us prove that the sum of these angles is 180 degrees (or π, or a straight
angle). For this, let us draw the unique line that passes through A and is also
parallel to BC (Figure 6.10). Using the alternate-angle theorem, we have

∠CAB + ∠ABC + ∠BCA = ∠CAB + θ + φ = π,

which completes the proof.
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FIGURE 6.10: Proving that the sum of the angles in a triangle is always π,
using the alternate-angle theorem.

6.11 Similar and Identical Triangles

Two triangles, say 4ABC and 4A′B′C ′, are said to be similar to each
other if their corresponding angles are equal to each other, that is,

∠CAB = ∠C ′A′B′, ∠ABC = ∠A′B′C ′, and ∠BCA = ∠B′C ′A′,

and the ratios between their corresponding edges are the same:

AB

A′B′ =
BC

B′C ′ =
CA

C ′A′ .

When these five conditions hold, the triangles are similar:

4ABC ∼ 4A′B′C ′.

Loosely speaking, 4A′B′C ′ is obtained from putting the original triangle,
4ABC, in a photocopier that may increase or decrease its size but not change
the proportions in it.

If, in addition, the above ratios are also equal to 1, that is,

AB

A′B′ =
BC

B′C ′ =
CA

C ′A′ = 1,

then the above “photocopier” neither increases nor decreases the size of the
triangle, so the triangles are actually identical:

4ABC ' 4A′B′C ′.

Thus, identical triangles satisfy six conditions: three equal corresponding an-
gles and three equal corresponding edges.

Although similarity of triangles involves five conditions and identity of tri-
angles involves six conditions, in some cases it is sufficient to verify two condi-
tions only to establish similarity, and three conditions only to establish iden-
tity. This is summarized in the following four axioms, known as the similarity
axioms and the identity axioms.
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1. If two edges in the triangles have the same ratio, that is,

AB

A′B′ =
BC

B′C ′ ,

and the corresponding angles in between them are the same, that is,

∠ABC = ∠A′B′C ′,

then the triangles are similar to each other:

4ABC ∼ 4A′B′C ′.

If, in addition, the above ratios are also equal to 1, that is,

AB = A′B′ and BC = B′C ′,

then the triangles are also identical:

4ABC ' 4A′B′C ′.

2. If there are two angles in one triangle that are equal to their counterparts
in the other triangle, e.g.,

∠CAB = ∠C ′A′B′ and ∠ABC = ∠A′B′C ′,

then the triangles are similar to each other. If, in addition, the ratio of
two corresponding edges is equal to 1, e.g.,

AB

A′B′ = 1 or AB = A′B′,

then the triangles are also identical to each other.
3. If the three ratios of corresponding edges are the same, that is,

AB

A′B′ =
BC

B′C ′ =
CA

C ′A′ ,

then the triangles are similar to each other. If, in addition, these ratios
are also equal to 1, then the triangles are also identical to each other.

4. If the ratios in two pairs of corresponding edges are the same, that is,

AB

A′B′ =
CA

C ′A′ ,

and the angle that lies in one triangle across from the longer of the two
edges in it that take part in the above ratios is the same as its counterpart
in the other triangle, that is,

∠ABC = ∠A′B′C ′ and CA ≥ AB,

then the triangles are similar to each other. If, in addition, the above ratios
are also equal to 1, then the triangles are also identical to each other.
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FIGURE 6.11: Two triangles that satisfy the equations in the fourth axiom,
but not the inequality in it, hence are neither identical nor similar to each other.

In each of the first three axioms, two equations are sufficient to imply simi-
larity, and one extra equation is needed to imply identity. In the fourth axiom,
on the other hand, there is also an extra inequality that must hold: the angles
that are known to be equal to each other must lie across from the longer of
the edges (in each triangle) that are used in the equations about the ratios.
In other words, we must have CA ≥ AB.

Let us illustrate why this inequality is so important. Indeed, if it was vio-
lated, then we could have a case as in Figure 6.11, in which the three identity
conditions in the fourth axiom are satisfied, yet the triangles are neither iden-
tical nor similar to each other. The reason for this is that, unlike in the fourth
axiom, here CA < AB. As a result, no similarity axiom applies, and the
triangles may well be dissimilar.

6.12 Isosceles Triangles
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FIGURE 6.12: An isosceles triangle, in which CA = AB.
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An isosceles triangle is a triangle with two equal edges. For example, in
Figure 6.12,

CA = AB.

The third edge, BC, which is not necessarily equal to the two other edges, is
called the base. The angles near it, ∠ABC and ∠BCA, are called the base
angles. The third angle, ∠CAB, is called the head angle.

�
�
�
�
�
��

B
B

B
B

B
BB

D

A

B C

FIGURE 6.13: Dividing the head angle in the isosceles triangle into two
equal parts to prove that the base angles are equal to each other.

Let us use the above identity axioms to show that, in an isosceles triangle,
the base angles are equal to each other. For this, let us divide the head angle
into two equal angles by drawing the line segment AD (Figure 6.13):

∠DAB = ∠DAC.

(The line segment AD is then called the bisector of the angle ∠CAB.) Thanks
to the fact that the triangle is isosceles, we have that

AB = AC.

Furthermore, we also have trivially that

DA = DA.

Thus, the first identity axiom implies that

4ABD ' 4ACD.

Note that the order of letters in both triangles in this formula, when extended
periodically, agrees with the order of letters in the above equations about
angles and edges. Because identical triangles have equal edges and angles
(respectively), we can conclude that the base angles are indeed equal to each
other, as asserted:

∠ABD = ∠ACD.
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Note that the order of letters in both of these angles again agrees with the
order of letters used to denote the triangles to whom they belong. Note also
that, in the above proof, we only translated the language in which the as-
sumption is written into the language in which the assertion is written. In
fact, the assumption is given in terms of equal edges in the original isosceles
triangle. The assertion, on the other hand, is given in terms of equal angles:
the base angles. Thanks to the second identity axiom, we were able to transfer
the known equality of edges to the asserted equality of angles.

Let us now prove the reversed theorem, which assumes that the base angles
in some triangle are equal to each other, and claims that the triangle must
then be an isosceles triangle. In other words, assuming that

∠ABC = ∠BCA

in Figure 6.12, we have to show that

AB = CA.
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FIGURE 6.14: Dividing the head angle into two equal parts to prove that the
triangle is isosceles.

To do this, let us use Figure 6.14. Note that, in the present case, the as-
sumption is given in terms of equal angles, whereas the assertion is given in
terms of equal edges. In order to transfer the information in the assumption
into the required language used in the assertion, we use this time the second
identity axiom. Indeed, since

∠ABD = ∠ACD, ∠DAB = ∠DAC, and DA = DA,

the second identity axiom implies that

4ABD ' 4ACD.

Since corresponding edges in identical triangles are equal to each other, we
have that

AB = AC,

as indeed asserted.

© 2009 by Taylor and Francis Group, LLC



6.13. PYTHAGORAS’ AXIOM 79

6.13 Pythagoras’ Axiom
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FIGURE 6.15: In a right-angled triangle, the hypotenuse CA is the largest
edge.

Pythagoras’ axiom says that, in a right-angled triangle as in Figure 6.15, in
which ∠ABC is a right angle, the hypotenuse (the edge that lies across from
the right angle) is greater than each other edge:

CA > AB and CA > BC.
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FIGURE 6.16: Using the fourth identity axiom to prove that the height in an
isosceles triangle divides the head angle into two equal parts.

Let us use Pythagoras’ axiom to prove that, in an isosceles triangle 4ABC
as in Figure 6.16, the height AE to the base BC (which makes a right angle
with BC) is also a bisector of the head angle, that is, it divides the head angle
into two equal parts:

∠EAB = ∠EAC.

Indeed, the height makes a right angle with the base BC:
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∠BEA = ∠CEA = π/2.

Furthermore, from Pythagoras’ axiom we also have that

AB > EA and AC > EA.

Using also the original assumption that AB = AC and the trivial equation
EA = EA, we have from the fourth identity axiom that

4ABE ' 4ACE.

In particular, we have that

∠EAB = ∠EAC,

as indeed asserted.

6.14 Sum of Edges
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FIGURE 6.17: Using the height AD and Pythagoras’ axiom to prove that
the sum of the edges CA and AB is greater than the third edge, BC.

Let us also use Pythagoras’ axiom to prove that, in a triangle 4ABC as in
Figure 6.9, the sum of two edges is greater than the third edge:

CA + AB > BC.

To this end, let us draw the height AD that meets BC in a right angle (Figure
6.17):

∠ADB = ∠ADC = π/2.

(Without loss of generality, one can assume that D, the endpoint of the height,
is indeed on the line segment BC; otherwise, the proof is even easier, because
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it follows immediately from Pythagoras’ axiom.) From Pythagoras’ axiom for
the right-angled triangle 4ADB, we have that

AB > BD.

Similarly, from Pythagoras’ axiom for 4ADC, we have that

CA > DC.

By adding these equations, we have

AB + CA > BD + DC = BC,

as indeed asserted.

6.15 The Longer Edge

Let us use the above theorem to prove that, in a triangle 4ABC as in
Figure 6.9, the longer edge lies across from the larger angle. In other words, if

∠ABC > ∠BCA,

then
CA > AB.

To do this, note that the first inequality, the assumption, is given in terms
of angles, whereas the second inequality, the assertion, is written in terms of
edges. Thus, to prove the theorem we must translate the known information
about angles into terminology of edges. To do this, we must first understand
better the meaning of the given information, so that we can use it properly.

The assumption is given as an inequality between angles. This means that
we can map the smaller angle, ∠BCA, and embed it in the larger one, ∠ABC.
This is done in Figure 6.18, yielding the equation

∠BCD = ∠DBC,

where D is the point at which the ray onto which CA is mapped crosses CA.
Fortunately, this equation can be easily translated into an equation about

edges. Indeed, it implies that 4DBC is an isosceles triangle, or

DB = CD.

Thus, the edge CA in the original triangle 4ABC can be written as the sum

CA = CD + DA = BD + DA.
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FIGURE 6.18: The smaller angle, vertexed at C, is mapped onto the new
angle DBC which lies inside the larger angle, ABC.

Fortunately, the latter sum uses two edges in the new triangle 4ABD, hence
is necessarily greater than the third edge in this triangle:

BD + DA > AB.

This implies that
CA > AB,

as indeed asserted.

6.16 Tales’ Theorem

The fourth similarity axiom requires an extra condition: the angle must be
across from the larger edge. Indeed, if this condition is violated, one could
construct dissimilar triangles, as in Figure 6.11. These dissimilar triangles
have an important role in the proof of Tales’ theorem.

Tales’ theorem says that, in a triangle 4ABC as in Figure 6.9, if the line
segment BD is a bisector of ∠ABC, that is, it divides it into the two equal
parts

∠DBA = ∠DBC

as in Figure 6.19, then the following ratios are equal to each other:

AB

CB
=

DA

DB
.

In this theorem, the information is given in terms of angles, whereas the
assertion uses terms of ratios. How can we translate the language used in the
assumption into language of ratios? The obvious way is to use a similarity
axiom.
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FIGURE 6.19: Tales’ theorem: if BD divides the angle ABC into two equal
parts, then AB/BC = AD/DC.

Unfortunately, the naive candidates for similarity, the triangles 4DBA and
4DBC, are not similar to each other. Indeed, BD produces two supplemen-
tary angles, ∠ADB and ∠CDB, which are not necessarily equal to each other.
In Figure 6.19, for example,

∠ADB < π/2 < ∠CDB.

Thus, in order to prove Tales’ theorem, we must turn from 4CDB to a
triangle that is related to it in the same way as the triangles in Figure 6.11
are related to each other. For this purpose, we use a compass to draw an arc of
radius CD around C, so it crosses the ray BD at the new point E, producing
the isosceles triangle 4CDE (Figure 6.20).
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FIGURE 6.20: Tales’ theorem follows from the similarity 4ECB ∼ 4DAB,
which follows from the second similarity axiom and the fact that CD = CE.

Note that 4DCB and 4ECB are related to each other in the same way
as the triangles in Figure 6.11 are related to each other. Thus, 4ECB may
be a better candidate to be similar to 4DAB. To show this, recall that, since
4CDE is an isosceles triangle, its base angles are equal to each other:

∠CDE = ∠DEC.

Furthermore, since ∠BDA and ∠CDE are vertical angles, we have
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∠BDA = ∠CDE = ∠DEC.

Using also the assumption and the second similarity axiom, we have that

4DAB ∼ 4ECB.

Since in similar triangles all the ratios between corresponding edges are the
same, we have that

AB

CB
=

DA

EC
=

DA

DC
,

as indeed asserted. This completes the proof of Tales’ theorem.

6.17 The Reversed Tales’ Theorem

�
�

�
��

�
�
�
�
�
��@

@
@

@
@

@

D

B

A

C

FIGURE 6.21: The reversed Tales’ theorem: if AB/BC = AD/DC, then BD
divides the angle ABC into two equal parts.
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FIGURE 6.22: Proving the reversed Tales’ theorem by contradiction: if the
angle DBA were smaller than the angle DBC, then there would be a point F on

CA such that BF divides the angle ABC into two equal parts.
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Let us now use Tales’ theorem to prove the reversed theorem, in which the
roles of the assumption and the assertion in Tales’ theorem are interchanged.
More explicitly, this theorem assumes that

AB

CB
=

DA

DC

in Figure 6.21, and asserts that

∠DBA = ∠DBC.

Let us prove this theorem by contradiction. For this purpose, assume mo-
mentarily that BD is not a bisector of the angle ∠ABC, that is,

∠DBA 6= ∠DBC.

Then, one could divide ∠ABC into two equal parts by the bisector BF :

∠ABF = ∠CBF,

where F is a point on CA that is different from D (Figure 6.22). (This can
be done by using a compass to draw an arc of radius BA around B, so it
crosses BC at the new point G, and then using a ruler to draw the height in
the isosceles triangle 4BAG from B to the base AG.) From Tales’ theorem,
we now have that

BA

BC
=

FA

FC
6= DA

DC
,

in contradiction to our original assumption. Thus, our momentary assumption
as if

∠ABD 6= ∠CBD

must have been false, which completes the proof of the theorem.

6.18 Circles

A circle is an object based on two more elementary objects: a point O to
denote the center of the circle, and a line segment r to denote the radius of
the circle. A point P lies on the circle if its distance from its center is equal
to the radius:

OP = r.

A chord is a line segment that connects two distinct points that lie on the
circle. For example, if A and C lie on the circle, then AC is a chord in this
circle.
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A central angle is an angle that is vertexed at the center of the circle. For
example, if AC is a chord, then ∠AOC is a central angle. In this case, we say
that the chord AC subtends the central angle ∠AOC.

An inscribed angle is an angle that is vertexed at some point that lies on
the circle. For example, if AC is a chord and B is a point on the circle, then
∠ABC is an inscribed angle. In this case, we say that the chord AC subtends
the inscribed angle ∠ABC.
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FIGURE 6.23: The central angle AOC is twice the inscribed angle ABC
subtended by the same chord AC. The first case, in which the center O lies on the

leg BC of the inscribed angle ABC.

Let us show that a central angle is twice the inscribed angle subtended by
the same chord:

∠AOC = 2∠ABC.

To prove this, let us consider three possible cases. In the first case, the center
O lies on one of the legs of ∠ABC, say BC (Figure 6.23). To prove the
assertion, we must first understand that the main assumption is that the
angles are embedded in a circle, which is an object that is characterized by
the property that every point that lies on it is of the same distance from its
center. In particular, this is true for the points A and B, implying that

AO = BO,

or that 4OAB is an isosceles triangle.
So far, we have only interpreted the assumption in terms of line segments

and the relation between them. The assertion, on the other hand, is written as
a relation between angles. Therefore, we must translate the assumption into a
property of angles rather than edges. Indeed, thanks to the fact that 4OAB
is an isosceles triangle, we know that its base angles are equal to each other:
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∠OAB = ∠ABO.

Thus, the central angle is related to the inscribed angle by

∠AOC = π − ∠AOB = ∠OAB + ∠ABO = 2∠ABO = 2∠ABC,

as indeed asserted.
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FIGURE 6.24: The central angle AOC is twice the inscribed angle ABC
subtended by the same chord AC. The second case, in which the center O lies

inside the inscribed angle ABC.
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FIGURE 6.25: Proving that the central angle AOC is twice the inscribed
angle ABC (subtended by the same chord AC) by drawing the diameter BD that

splits it into two angles.
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Let us now consider the case in which the center O lies within the inscribed
angle ∠ABC, as in Figure 6.24. To prove the assertion in this case, let us
draw the diameter BD that passes through the center O (Figure 6.25). From
the previous case, we have that

∠AOD = 2∠ABD

and that
∠COD = 2∠CBD.

By adding these equations, we have that

∠AOC = 2∠ABC,

as required.
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FIGURE 6.26: The central angle AOC is twice the inscribed angle ABC
subtended by the same chord AC. The third case, in which the center O lies

outside the inscribed angle ABC.

Finally, let us consider the case in which the center O lies outside the
inscribed angle ∠ABC, as in Figure 6.26. Again, let us draw the diameter
BD, which passes through O (Figure 6.27). From the first case above, we
have that

∠AOD = 2∠ABD

and that
∠COD = 2∠CBD.

By subtracting this equation from the previous one, we have that

∠AOC = 2∠ABC,

as asserted.
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FIGURE 6.27: Proving that the central angle AOC is twice the inscribed
angle ABC (subtended by the same chord AC) by drawing the diameter BD and

using the first case.

6.19 Tangents

A tangent is a line that shares only one point with a circle. More precisely,
if P is the only point that lies on both the circle and the line, then we say
that the line is tangent to the circle at P .

Let us show that the tangent makes a right angle with the radius OP . In
other words, if Q is some point on the tangent, then

∠OPQ = π/2.

Let us prove this by contradiction. Indeed, assume momentarily that the
tangent makes with OP an acute angle:

∠OPQ = α < π/2.

Then, we could draw the line segment OU that crosses the tangent at U and
makes an angle of π − 2α with OP :

∠UOP = π − 2α

(Figure 6.28). But then the new triangle 4OPU has the equal base angles

∠OPU = ∠PUO = α,

so it must be also an isosceles triangle in the sense that

OP = OU.
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FIGURE 6.28: Proving by contradiction that the tangent makes a right angle
with the radius OP . Indeed, if α were smaller than π/2, then the triangle OPU
would be an isosceles triangle, so both P and U would lie on both the circle and

the tangent, in violation of the definition of a tangent.

But this implies that U lies not only on the tangent but also on the circle, so
the tangent shares with the circle not one but rather two points, P and U , in
contradiction to the definition of a tangent. The conclusion must therefore be
that our momentary assumption is false, and that our assertion that

∠OPQ = π/2

is true.
Conversely, let us now show that a line that passes through a point P

on the circle and makes a right angle with the radius OP must also be a
tangent. (This is the reversed theorem, in which the roles of the assumption
and the assertion in the above theorem are interchanged.) Let us prove this
by contradiction. Indeed, let us assume momentarily that the line were not a
tangent. Then, there would be another point, say U , shared by the circle and
the tangent (Figure 6.29). This means that the new triangle 4OPU would
have been an isosceles triangle in the sense that

OP = OU.

But, from our original assumption, this triangle is also a right-angled triangle
in the sense that

∠OPU = π/2,

which implies, in conjunction with Pythagoras’ axiom, that

OP < OU.

© 2009 by Taylor and Francis Group, LLC



6.20. PROPERTIES OF THE TANGENT 91

O

P
Uπ/2

�������

�������

J
J

J
J

J
JJ

pppppppppp
ppppppppppp

ppppppppppppppp
ppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppp p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p

p p p p p ppppppp
pppppppppp
ppp

FIGURE 6.29: Proving by contradiction that a line that passes through P
and makes a right angle with the radius OP must be a tangent. Indeed, if it were
not (as in the figure), then the triangle OPU would be an isosceles triangle, in

violation of Pythagoras’ axiom.

This contradiction implies that our momentary assumption must have been
false, and the line is indeed a tangent, as asserted.

In summary, a line is tangent to the circle at P if, and only if, it makes a right
angle with the radius OP . In other words, making a right angle with the radius
is not only a mere property of the tangent, but actually a characterization
that could be used as an alternative definition: a tangent to the circle at P
is the line that makes a right angle with the radius OP . Below we’ll use this
characterization to study further the tangent and its properties.

6.20 Properties of the Tangent

The above characterization implies immediately that the tangent to the
circle at P is unique. Indeed, from the definition of an angle, there can be
only one line that passes through P and makes a right angle with the radius
OP . Below, we’ll use this characterization to prove more theorems.

Let us show that the angle produced by the tangent and a chord AP is the
same as the inscribed angle subtended by this chord. In other words,

∠EPA = ∠ABP

in Figure 6.30, where BP is chosen to be a diameter that passes through O.
(Because every inscribed angle subtended by the chord AP is equal to half
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FIGURE 6.30: The angle produced by the tangent and the chord AP is the
same as the inscribed angle subtended by the chord AP .

the central angle subtended by this chord, they are all equal to each other,
so one may choose the location of B on the circle in such a way that BP is
indeed a diameter.)

Indeed, the straight angle ∠BOP can be viewed as a central angle subtended
by the chord BP (the diameter). Because the inscribed angle ∠BAP is also
subtended by the chord BP , we have that

∠BAP =
1
2
∠BOP = π/2.

This means that the triangle 4BAP is actually a right-angled triangle. Fur-
thermore, from our characterization of a tangent, it follows that ∠BPE is a
right angle as well. As a result, we have that

∠APE = ∠BPE − ∠BPA = π/2− ∠BPA = ∠ABP,

as indeed asserted.
Finally, let us use the above characterization of a tangent to show that the

two tangents to the circle at the two distinct points P and Q produce an
isosceles triangle 4UPQ in the sense that

UP = UQ,

where U is their crossing point (Figure 6.31). Indeed, from the characterization
of a tangent it follows that

∠OPU = ∠OQU = π/2.

From Pythagoras’ axiom, it therefore follows that
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FIGURE 6.31: Two tangents that cross each other at the point U : proving
that UP = UQ by using the fourth identity axiom to show that the triangle OPU

is identical to the triangle OQU .

OU > OP = OQ.

From the fourth identity axiom, it therefore follows that

4OPU ' 4OQU.

As a result, we have that
PU = QU,

as indeed asserted.

6.21 Exercises

1. What is a point in Euclidean geometry?
2. What is the possible relation between points in Euclidean geometry?
3. What is a line in Euclidean geometry?
4. What are the possible relations between lines in Euclidean geometry?
5. What are the possible relations between points and lines in Euclidean

geometry?
6. Interpret points and lines in Euclidean geometry as mere abstract objects

that have some possible relations and satisfy some axioms.
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FIGURE 6.32: Assume that angle ADB is a right angle. Show that angle
ABC is a right angle if and only if AD/DB = BD/DC.

7. What is a line segment in Euclidean geometry?
8. What are the possible relations between line segments? How are they

checked?
9. Show that the <= relation between line segments is complete in the sense

any two line segments have this relation between them.
10. What is an angle in Euclidean geometry?
11. What are the possible relations between angles? How are they checked?
12. Show that the <= relation between angles is complete in the sense any

two angles have this relation between them.
13. What is a triangle in Euclidean geometry?
14. What are the possible relations between triangles in Euclidean geometry?

How are they checked?
15. Say the four identity and similarity axioms by heart.
16. Assume that, in Figure 6.32, the angles ∠ABC and ∠ADB are right

angles. Show that
AD

DB
=

BD

DC
.

(Note that the assertion is written in terms of ratios, so the assumptions
should also be transformed to the language of ratios, using a similarity
axiom.)

17. Conversely, assume that ∠ADB is a right angle and that

AD

DB
=

BD

DC
.

Show that ∠ABC is a right angle as well.
18. What is a circle in Euclidean geometry?
19. What are the possible relations between lines and circles?
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Chapter 7

Analytic Geometry

In Euclidean geometry, elementary objects such as points and lines are never
defined explicitly; only the relations between them are specified. These objects
are then used to obtain more complex objects, such as rays, line segments,
angles, and triangles. Finally, circles are obtained from points and line seg-
ments.

In analytic geometry, on the other hand, the only elementary object is the
point, which is defined in terms of its two coordinates x and y to specify its
location in the plane [30]. All other objects, including lines and circles, are just
sets of points that satisfy some prescribed algebraic equation. Thus, analytic
geometry depends strongly on real numbers and the arithmetic operations
between them.

7.1 God and the Origin

The ancient Greeks based their mathematical theory of geometry on a few
elementary objects such as point, line, angle, etc., which may have relations
between them, such as a point lying on a line, a line passing through a point,
etc. Euclidean geometry also uses a few natural axioms, such as that only
one line can pass through two given points and that only one line passes
through a given point in such a way that it is also parallel to a given line.
These axioms are then used to prove further theorems and establish the entire
theory to give a complete picture about the nature and properties of shapes
in the two-dimensional plane.

It was Rene Descartes in the 17th century who observed how helpful it
could be to use an axes system in the plane, with the x- and y-axes that
are perpendicular to each other. This way, each point can be described by
its coordinates (x, y), and a line is just a set of points whose coordinates are
related by some linear equation. This approach, known as analytic geometry,
provides straightforward proofs to many theorems in geometry.

The interesting question is: why didn’t the ancient Greeks think about
the Cartesian geometry in the first place? After all, they were well aware of
numbers and their properties. Why then didn’t they use them to describe sets

95
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of points analytically?
One possible answer is that the ancient Greeks couldn’t accept relativism.

Indeed, in order to use Cartesian geometry, one must first introduce an axes
system. But this can be done in infinitely many ways. Who is authorized to
determine where the axes, and in particular the origin, should be?

The ancient Greeks probably expected God to determine the absolute axes
system. Unfortunately, God never did this. They were therefore forced to stick
to their original definition of a line as a mere object rather than a set of points.
In fact, in Euclidean geometry, the line object can relate to a point by passing
through it, but is never viewed as a set of points.

Only Descartes, with his more secular views, could introduce a more relative
axes system. Indeed, in his/her theory, everyone can define his/her own axes
system as he/she sees fit. Then, they could go ahead and prove theorems
according to their private axes system. Fortunately, the proofs are independent
of the particular axes system in use, thus are relevant not only to the one who
writes them originally but also to everyone else, who may well use them in
their own axes systems as well.

Thus, Descartes’ secular views led to the introduction of an axes system
that is no longer absolute but rather relative to the person who defines it
in the first place. The geometrical objects and the proofs of theorems are
then also relative to this axes system. Still, the theory is not limited to this
particular axes system, because equivalent proofs can be written in any other
axes system as well.

In Descartes’ view, God may thus take a rather nontraditional interpreta-
tion: no longer as a transcendental force that creates and affects our material-
istic world from the outside, but rather as an abstract, personal, psychological
drive that represents one’s mind, spirit, or conscience, and lies in one’s soul
or consciousness. This God is also universal, because it lies in each and every
human being, regardless of their nationality, race, gender, or religion. This
personal God may well introduce a private axis system for personal use; the
analytic geometry developed from this axis system is independent of it, and
may be easily transferred to any other axis system introduced by any other
person.

7.2 Numbers and Points

In Euclidean geometry, points and lines are the most elementary objects:
they are defined only implicitly, using their relations and axioms. In analytic
geometry, on the other hand, they are no longer the most elementary objects.
In fact, they are defined explicitly in terms of yet more elementary objects:
numbers.
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P = (x, y)

x

y p

FIGURE 7.1: The point P = (x, y) whose x-coordinate is x and y-coordinate
is y.

Indeed, in analytic geometry points and lines are no longer mere abstract
objects imposed on us by God or any other external force or mind. On the
contrary: they are defined explicitly, using real numbers in some axis system.
In particular, a point P is just a pair of real numbers of the form

P = (x, y),

where x is the real number denoting the x-coordinate of the point P and y is
the real number denoting the y-coordinate of P (Figure 7.1).

7.3 Lines – Sets of Points

Furthermore, a line l is now defined as a set of all the points whose x- and
y-coordinates are related by some linear equation:

l = {(x, y) | alx + bly = cl},

where al, bl, and cl are some given real parameters that specify the line l, and
al and bl do not both vanish.

Similarly, one could define another line m by

m = {(x, y) | amx + bmy = cm}.

The two lines l and m are parallel to each other if there is a nonzero real
number q that relates both al and bl to am and bm:

al = qam and bl = qbm.

If, in addition, cl and cm are also related to each other in the same way, that
is, if

cl = qcm
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as well, then l and m are actually identical to each other:

l = m.

If, on the other hand, l and m are neither parallel nor identical to each
other, that is, if no such number q exists, then it can be shown algebraically
that l and m cross each other at a unique point, that is, there is exactly one
point that lies on both l and m. In other words, there is exactly one pair of
real numbers (xlm, ylm) that solves both equations

alxlm + blylm = cl and amxlm + bmylm = cm.

7.4 Hierarchy of Objects

Thus, analytical geometry is based on a hierarchy of objects. The most
elementary objects, the real numbers, lie at the bottom of the hierarchy. These
objects are then used to define more complex objects, points, at the next
higher level in the hierarchy. Furthermore, points are then used to define yet
more complex objects, lines, at the next higher level of the hierarchy, and so
on.

This hierarchy may be extended further to define yet more complex objects
such as angles, triangles, circles, etc. The definitions of these objects as sets
of points may then be used to prove theorems from Euclidean geometry in an
easier way.

7.5 Half-Planes

Let us use the above hierarchy of objects to define angles. For this, however,
we need first to define half-planes.

The half-plane Hl defined from the line l defined above is the set of all the
points whose coordinates are related by a linear inequality of the form:

Hl = {(x, y) | alx + bly ≥ cl}

(Figure 7.2).
Note that the above definition is somewhat ambiguous. Indeed, if the line l

takes the equivalent form

l = {(x, y) | −alx− bly = −cl},
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l
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FIGURE 7.2: The half-plane Hl that lies in the north-western side of the line
l.

then the half-plane Hl associated with it is not the above half-plane but rather
its complementary half-plane:

Hl = {(x, y) | −alx− bly ≥ −cl}.

Thus, the precise definition of the correct half-plane Hl depends not only on
the line l but also on its parameterization, that is, on the way in which it is
defined. In the sequel, one should determine which Hl is used (the original one
or its complementary) according to the requirements in the object constructed
from it.

7.6 Angles

An angle is now defined as the intersection of the two half-planes associated
with two nonparallel lines l and m:

Hl ∩Hm

(Figures 7.3–7.4).
Clearly, if l and m are the same line, then the above definition gives a

straight angle
Hl ∩Hl = Hl.

Thus, by choosing the lines l and m properly, one could construct every angle
that is smaller than or equal to π. If an angle larger than π is required, then
one should also consider unions of half planes of the form

Hl ∪Hm.
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PPPPPPPPPm

Hm

FIGURE 7.3: The second half-plane Hm that lies in the north-eastern side of
the line m.

�
�
�
�
�
�
�
�
��

l

Hl ∩Hm

PPPPPPPPPm

FIGURE 7.4: The angle Hl ∩Hm created by the lines l and m is the
intersection of the half-planes Hl and Hm.

7.7 Triangles

���
���

���

n

Hn

FIGURE 7.5: The third half-plane Hn that lies in the south-eastern side of
the line n.

A triangle can now be defined as the intersection of three half-planes:

Hl ∩Hm ∩Hn,
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FIGURE 7.6: The triangle Hl ∩Hm ∩Hn created by the lines l, m, and n is
the intersection of the half-planes Hl, Hm, and Hn.

where l m, and n are distinct nonparallel lines (Figures 7.5–7.6). Of course,
the right sides of these lines should be used to avoid a trivial triangle.

7.8 Circles

In analytic geometry, a circle is defined in terms of two given parameters: a
point O = (xo, yo) to mark its center, and a positive real number r to denote
its radius. Using Pythagoras’ theorem, the circle c is then defined as the set
of all the points whose distance from O is equal to r:

c = {(x, y) | (x− xo)2 + (y − yo)2 = r2}.

Thus, unlike in Euclidean geometry, in which the radius is a line segment,
here the radius is a positive real number. Furthermore, the circle is no longer
a mere elementary object, but is rather the set of all the points that satisfy
the quadratic equation that stems from Pythagoras’ theorem. This algebraic
interpretation gives the opportunity to prove theorems more easily than in
Euclidean geometry.

7.9 Exercises

1. What is a point in analytic geometry?
2. What is the possible relation between points? How is it checked?
3. What is a line in analytic geometry?
4. What are the possible relations between lines? How are they checked?
5. What are the possible relations between points and lines? How are they

checked?
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6. What is a line segment in analytic geometry?
7. What are the possible relations between line segments? How are they

checked?
8. What is an angle in analytic geometry?
9. What are the possible relations between angles? How are they checked?

10. What is a circle in analytic geometry?
11. What are the possible relations between circles? How are they checked?
12. What are the possible relations between lines and circles? How are they

checked?
13. Let the 2 by 2 matrix A be the table of four given numbers a1,1, a1,2, a2,1,

and a2,2:

A =
(

a1,1 a1,2

a2,1 a2,2

)
.

The matrix A can be viewed as a transformation of the Cartesian plane.
Indeed, if a point (x, y) in the Cartesian plane is viewed as a 2-dimensional
column vector with the 2 components x and y, then A transforms it into
the 2-dimensional column vector

A

(
x
y

)
=
(

a1,1x + a1,2y
a2,1x + a2,2y

)
.

Show that this transformation is linear in the sense that, for any point p
in the Cartesian plane and any scalar α,

A(αp) = αAp,

and, for any two points p and q in the Cartesian plane,

A(p + q) = Ap + Aq.

14. Consider the special case, in which

A =
(

cos(θ) − sin(θ)
sin(θ) cos(θ)

)
for some 0 ≤ θ < 2π. Show that A transforms the point (1, 0) in the
Cartesian plane by rotating it by angle θ. Furthermore, show that A also
transforms the point (0, 1) by rotating it by angle θ. Moreover, use the
representation

(x, y) = x(1, 0) + y(0, 1)

and the linearity of the transformation to show that A transforms any
point (x, y) in the Cartesian plane by rotating it by angle θ.

15. Conclude that A transforms the unit circle onto itself.
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Introduction to Composite Mathematical
Objects
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Introduction to
Composite Mathematical Objects

The mathematical objects discussed so far can be divided into two classes:
elementary objects and composite objects. Elementary objects can be viewed
as atoms that cannot be divided and are defined only in terms of the axioms
associated with them. Composite objects, on the other hand, can be defined
in terms of simpler objects. Thus, in the hierarchy of objects, the elementary
objects are placed in the lowest level, whereas the composite objects are placed
in the higher levels, so their definitions and functions may use more elementary
objects from the lower levels.

6

6

6

6

natural numbers

rational numbers

real numbers

points and complex numbers

lines, angles, circles

FIGURE 7.7: Hierarchy of mathematical objects, from the most elementary
ones at the lowest level to the most complicated ones at the highest level.

For example, natural numbers can be viewed as elementary objects, because
their definition and arithmetic operations are based on the induction axiom
only. This is why natural numbers should be placed in the lowest level in
the hierarchy of mathematical objects (Figure 7.7). Rational numbers, on the
other hand, can be viewed as composite objects. Indeed, a rational number is
actually a pair of two natural numbers: its numerator and its denominator.

A pair is actually an ordered set of two elements: the first element and
the second element. Thus, a rational number can be viewed as an ordered
set of two natural numbers. In other words, a rational number can be viewed
as a composite object, consisting of two natural numbers. This is why ra-
tional numbers should be placed in the next higher level in the hierarchy of
mathematical objects.

Furthermore, a real number can be viewed as an infinite set containing the
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rational numbers that approach it. Thus, the real number is a yet more com-
plicated object, and should be placed in the next higher level in the hierarchy
of mathematical objects.

Furthermore, both a complex number and a point in the Cartesian plane
are actually pairs of real numbers, and should thus be placed in the next
higher level in the hierarchy of mathematical objects. Furthermore, geometri-
cal objects such as lines, angles, triangles, and circles in analytic geometry are
actually infinite sets of points, and should thus be placed in the next higher
level in the hierarchy of mathematical objects.

It is thus obvious that the concept of set is most important in constructing
mathematical objects. The first chapter in this part is devoted to this concept.
The next chapters in this part use further the concept of set to construct
several kinds of useful composite objects, with their special functions that
give them their special properties and nature.
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Chapter 8

Sets

As we have seen above, the notion of set is necessary to construct composite
mathematical objects from more elementary ones [15]. For example, a rational
number is actually an ordered set of two natural numbers, a real number is
actually an infinite set of rational numbers, a point in the Cartesian plane is
an ordered set of two real numbers, a line in analytic geometry is an infinite
set of points, and so on.

Thus, the notion of set is most important in constructing more and more
complex objects in the hierarchy of mathematical objects. This is why we
open this part with a chapter about sets and their nature.

8.1 Alice in Wonderland

In one of the scenes in Lewis Carroll’s Alice in Wonderland, Alice is invited
to a tea party. The host of this party, the Mad Hatter, declares that he is
going to pour tea to guests who don’t pour for themselves, but not for guests
who do pour for themselves. But then he is puzzled about whether or not he
should pour for himself: after all, if he pours for himself, then he too is a guest
who pours for himself, so according to his own declaration he shouldn’t pour
for himself. If, on the other hand, he doesn’t pour for himself, then he is a
guest who doesn’t pour for himself, so according to his declaration he should
pour for himself. This paradox is the basis for set theory, as is shown below.

8.2 Sets and Containers

The above paradox is equivalent to Russell’s paradox in set theory, which
can be viewed as the basis for the concept of the set. In the naive approach, a
set is a container that can contain elements of any kind. Below, however, we
show that this is not entirely true: not every container is also a set.

Let us introduce a few useful notations about sets. First, if the set S contains
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the element E, then this is denoted by

E ∈ S

(E belongs to S). Furthermore, it is assumed that every subset of the set S
is by itself a set as well. In other words, if T contains some of the elements in
S, then T is a set as well. This is then denoted by

T ⊂ S

(T is a subset of S).
So far, we haven’t specified the type of the elements in the set S. Actually,

they can be of any type; in fact, an element E ∈ S may well be a set in its own
right. Still, this doesn’t mean that E ⊂ S, because we have no information
about the elements in E, so we cannot check whether they belong to S as
well. What we do know is that {E} (the set whose only element is E) is a
subset of S:

{E} ⊂ S.

Indeed, the only element in {E}, E, belongs to S as well.

8.3 Russell’s Paradox

However, a set is not just a container of elements. In other words, not every
container of elements is a set. Consider for example the container S that
contains everything. Let us show by contradiction that S is not a set. Indeed,
if it were a set, then one could extract from it the following subset:

T = {A ∈ S | A 6∈ A}.

In other words, T contains only the containers that do not contain themselves
as an element.

Now, does T contain itself as an element? If it does, then it is not among
the A’s in the right-hand side in the above definition, so it cannot belong to
T . If, on the other hand, it doesn’t, then it is among the A’s in the right-hand
side in the above definition, so it must belong to T as an element. In any
case, we have a contradiction, so we can have neither T ∈ T nor T 6∈ T . This
is Russell’s paradox [9]; it leads to the conclusion that T is not a set, which
implies that S too is not a set.
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8.4 The Empty Set

We have seen above that the container that contains everything is too big
to serve as a set. Thus, not every container can be accepted as a set. We must
start from scratch: define small sets first, and use them to construct bigger
and bigger sets gradually and patiently.

The smallest set is the empty set: the set with no elements, denoted by ∅.
Although it may seem trivial, this set has a most important role in set theory.
In fact, just as the zero number is the additive unit number in the sense that

r + 0 = r

for every number r, ∅ is the additive unit set in the sense that

S ∪ ∅ = S

for every set S, where ’∪’ denotes the union operation:

A ∪B = {E | E ∈ A or E ∈ B}

for every two sets A and B.

8.5 Sets and Natural Numbers

As we have seen above, the empty set ∅ is equivalent to the number zero.
In fact, it can also be given the name ’0’. Similarly, the set {∅} (the set whose
only element is ∅) can be given the name ’1’. Furthermore, the set {{∅}} can
be given the name ’2’, and so on. In fact, this leads to an equivalent inductive
definition of the natural numbers:

0 ≡ ∅

and
n + 1 ≡ {n}

for n = 0, 1, 2, 3, . . ..

8.6 The Order of the Natural Numbers

Using the above alternative definition of natural numbers, one can easily
define the order relation ’<’ between two natural numbers m and n: m < n if
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m ∈ n or m < n− 1 (where n− 1 is the element in the set n). More concisely,
the recursive definition of the ’<’ order says that m < n if m ≤ n−1, precisely
as in the original definition of natural numbers in the beginning of this book.

8.7 Mappings and Cardinality
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FIGURE 8.1: Two sets A and B are equivalent to each other if there exists a
one-to-one mapping M from A onto B. Because each element b ∈ B has a unique
element a ∈ A that is mapped to it, one can also define the inverse mapping M−1

from B onto A by M−1(b) = a.

Consider the set that contains the first n natural numbers:

T = {1, 2, 3, . . . , n}.

This is indeed a set, because it can be written as the union of a finite number
of sets of one element each:

T = {1, 2, 3, . . . , n} = {1} ∪ {2} ∪ {3} ∪ · · · ∪ {n}.

Furthermore, this set is equivalent to any other set of the form

S = {a1, a2, a3, . . . , an}

in the sense that there exists a one-to-one mapping M from S onto T (Figure
8.1). Here, by “one-to-one” we mean that every two distinct elements in S
are mapped to two distinct elements in T , and by “onto” we mean that every
element in T has an element in S that is mapped to it. More explicitly, the
mapping can be defined by

M(ai) ≡ i, 1 ≤ i ≤ n.
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Thanks to the “one-to-one” and “onto” properties of the mapping M , one can
also define the inverse mapping M−1 from T back to S:

M−1(i) = ai, 1 ≤ i ≤ n.

The cardinality of a set is a measurement of its size. For finite sets such as S
and T above, the cardinality is just the number of elements in each of them:

|S| = |T | = n.

The equivalence of S and T , or the existence of the one-to-one mapping M
from S onto T , implies that their cardinality must be the same, as is indeed
apparent from the above equation.

Later on, we’ll define cardinality also for infinite sets. Their cardinality,
however, can no longer be a number, because they contain infinitely many
elements. Instead, it is a symbol that is the same for all sets that are equivalent
to each other in the sense that there exists a one-to-one mapping from one
onto the other.

8.8 Ordered Sets and Sequences

The set T that contains the first n natural numbers is an ordered set. Indeed,
for every two elements i and j in it, either i < j or i > j or i = j. Furthermore,
this order also induces an order in the set S defined above as follows: if a and
b are two distinct elements in S, then a is before b if M(a) < M(b) and b is
before a if M(b) < M(a) (Figure 8.2). Thus, the order in S is

a1, a2, a3, . . . , an.

In fact, with this order, S is not only a set but actually a sequence of n
numbers, denoted also by

{ai}ni=1.

In particular, when n = 2, S is a sequence of two numbers, or a pair. This
pair is then denoted by

(a1, a2).

Pairs are particularly useful in the definitions of points in the Cartesian plane
below.

8.9 Infinite Sets

Consider the container that contains all the natural numbers:
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FIGURE 8.2: The order in S is defined by the one-to-one mapping
M : S → T . For every two distinct elements a, b ∈ S, a is before b if M(a) < M(b).

N = {1, 2, 3, . . .}.

More precisely, N is defined inductively: first, it is assumed that 1 is in N;
then, it is also assumed that, for n = 1, 2, 3, 4, . . ., if n is in N, then n + 1 is
in N as well.

Is N a set? This is not a trivial question: after all, we have already met
above a container that is not a set. To show that N is indeed a set, we have
to use an axiom from set theory.

This axiom says that there exists an infinite set, say S. This implies that
every subset of S is a set as well. Now, to show that N is indeed a set, it is
sufficient to show that it is equivalent to a subset of S.

For this purpose, define the following one-to-one mapping M from the sub-
set S0 ⊂ S onto N as follows. Pick an element s1 ∈ S and map it to 1 ∈ N.
Then, pick another element s2 ∈ S and map it to 2 ∈ N, and so on. As a mat-
ter of fact, this is an inductive definition: assuming that s1, s2, s3, . . . , sn ∈ S
have been mapped to 1, 2, 3, . . . , n ∈ N, pick another element sn+1 ∈ S and
map it to n+1 ∈ N. (Because S is infinite, this is always possible.) As a result,
N is indeed equivalent to

S0 ≡ {s1, s2, s3, . . .} ⊂ S,

so it is indeed a set, as asserted.

8.10 Enumerable Sets

The cardinality of N, the set of natural numbers, is called ℵ0. This car-
dinality is not a number but merely a symbol to characterize sets that are
equivalent to N in the sense that they can be mapped onto N by a one-to-one
mapping. Such a set is called an enumerable set, because the elements in it
can be given natural indices and ordered in an infinite sequence (Figure 8.3).
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FIGURE 8.3: The infinite set S is called enumerable if it can be mapped by a
one-to-one mapping M onto N, the set of the natural numbers.

The cardinality ℵ0 is greater than every finite number n. Indeed, every
finite set of n elements can be mapped by a one-to-one mapping into N, but
not onto N. Furthermore, ℵ0 is the minimal cardinality that is greater than
every finite number, because (as we’ve seen above) every infinite set contains
a subset of cardinality ℵ0.
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FIGURE 8.4: The set N ∪ {0} is equivalent to N by the one-to-one mapping
i → i + 1 that maps it onto N.

It is common to assume that 0 is not a natural number, so the set of natural
numbers takes the form

N = {1, 2, 3, . . .}.

In the following, we mostly use this convention. Actually, it makes little dif-
ference whether 0 is considered as a natural number or not, because the above
induction to define the natural numbers could equally well start from 1 rather
than from 0. Furthermore, the one-to-one mapping

i→ i + 1

implies that
|N ∪ {0}| = |N| = ℵ0

(Figure 8.4).
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In the following, we consider some important sets of numbers, and check
whether they are enumerable or not.

8.11 The Set of Integer Numbers
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FIGURE 8.5: The one-to-one mapping M that maps Z (the set of the integer
numbers) onto N: the negative numbers are mapped onto the even numbers, and

the nonnegative numbers are mapped onto the odd numbers.

Let Z denote the set of the integer numbers. Let us show that Z is enu-
merable. For this purpose, we need to define a one-to-one mapping M from
Z onto N. This mapping is defined as follows:

M(i) =
{

2i + 1 if i ≥ 0
2|i| if i < 0.

Clearly, M is a one-to-one mapping from Z onto N, as required (Figure 8.5).

8.12 Product of Sets

Let A and B be some given sets. Their product is defined as the set of pairs
with a first component from A and a second component from B:

AB ≡ {(a, b) | a ∈ A, b ∈ B}.

This definition leads to the definition of the product of cardinalities:

|A| · |B| ≡ |AB|.
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FIGURE 8.6: The infinite grid N2 is enumerable (equivalent to N) because it
can be ordered diagonal by diagonal in an infinite sequence. The index in this

sequence is denoted in the above figure by the number to the right of each point in
the grid.

Let us use this definition to obtain the square of ℵ0:

ℵ2
0 = ℵ0 · ℵ0 = |N| · |N| = |N2|.

Recall that N2 is the set of pairs of natural numbers:

N2 = {(m,n) | m,n ∈ N}.

In fact, this set can be viewed as an infinite grid of points in the upper-
right quarter of the Cartesian plane (Figure 8.6). The points in this grid can
be ordered diagonal by diagonal, where the first diagonal contains the single
point (1, 1), the second diagonal contains the two points (2, 1) and (1, 2), the
third diagonal contains the three points (3, 1), (2, 2), and (1, 3), and so on. As
a result, the points in the grid are ordered in a sequence:

(1, 1), (2, 1), (1, 2), (3, 1), (2, 2), (1, 3), . . . .

Thus, N2 is an enumerable set, with cardinality ℵ0. Therefore, we have

ℵ2
0 = |N2| = ℵ0.

8.13 Equivalence of Sets

The equivalence relation between sets is indeed a mathematical equivalence
relation in the sense that it has three important properties: it is reflective,
symmetric, and transitive. Indeed, it is reflective in the sense that every set
A is equivalent to itself through the identity mapping I(a) = a that maps
each element to itself. Furthermore, it is symmetric in the sense that if A is
equivalent to B by the one-to-one mapping M that maps A onto B, then B
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is also equivalent to A by the inverse mapping M−1 that maps B back onto
A. Finally, it is transitive in the sense that if A is equivalent to B by the
one-to-one mapping M that maps A onto B and B is equivalent to C by the
one-to-one mapping M ′ that maps B onto C, then A is also equivalent to C
by the composite mapping M ′M that maps A onto C:

M ′M(a) ≡M ′(M(a)), a ∈ A.

XXXXXz
�����9

�

@
i i���� ����

M ′(B) M(A)

A B
M

M ′

FIGURE 8.7: The sets A and B are equivalent if A is equivalent to a subset
of B (by the one-to-one mapping M from A onto the range M(A) ⊂ B) and B is
equivalent to a subset of A (by the one-to-one mapping M ′ from B onto the range

M ′(B) ⊂ A).

To establish that two sets A and B are equivalent to each other, it is actually
sufficient to show that A is equivalent to a subset of B and B is equivalent to
a subset of A (Figure 8.7). Indeed, assume that A is equivalent to M(A) ⊂ B
(the range of M) by the one-to-one mapping M , and that B is equivalent to
the subset M ′(B) ⊂ A (the range of M ′) by the one-to-one mapping M ′. Let
us define the mapping K

K : A→M ′(B)

from A to M ′(B) as follows:

K(a) ≡
{

M ′M(a) if a ∈ ∪infty
i=0 (M ′M)i(A \M ′(B))

a otherwise,

where A \M ′(B) contains all the elements of A that are not in the range of
M ′, and ∪∞i=0 means the infinite union over every i ≥ 0:

∪infty
i=0 (M ′M)i(A \M ′(B))

= (A \M ′(B)) ∪M ′M(A \M ′(B)) ∪ (M ′M)(M ′M)(A \M ′(B)) · · · .
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Clearly, this infinite union is invariant under M ′M in the sense that every
element in it is mapped by M ′M to an element in it. This implies that K
is indeed a one-to-one mapping. Furthermore, K is a mapping from A onto
M ′(B). Indeed, every element a ∈M ′(B) is either in the above union or not.
If it is, then it must lie in (M ′M)i(A \ M ′(B)) for some i ≥ 1; if, on the
other hand, it is not, then it must satisfy K(a) = a. In either case, it is in
the range of K, as required. Thus, K is indeed a one-to-one mapping from A
onto M ′(B).

The conclusion is, thus, that A is equivalent to M ′(B) by the one-to-one
mapping K. As a consequence, A is also equivalent to B by the composite
mapping (M ′)−1K. This completes the proof of the equivalence of A and B.

The assumption that A is equivalent to a subset of B can be written sym-
bolically as

|A| ≤ |B|.

With this notation, one may say that we have actually proved that the in-
equalities

|A| ≤ |B| and |B| ≤ |A|

imply that
|A| = |B|.

In the following, we’ll use this theorem to obtain the cardinality of the set of
rational numbers.

8.14 The Set of Rational Numbers
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−1/2

3/2

0

3/4

−2

4/3

FIGURE 8.8: The set of the rational numbers, Q, is embedded in the infinite
grid N2, to imply that |Q| ≤ |N2| = ℵ0. In particular, m/n ∈ Q is embedded in

(m, n) ∈ N2, −m/n ∈ Q is embedded in (2m, 2n) ∈ N2, and 0 is embedded in (3, 3),
as denoted by the fractions just above the points in the above figure.
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The set of the rational numbers, denoted by Q, can be embedded by a one-
to-one mapping in N2 (Figure 8.8). Indeed, every positive rational number
can be written in the form m/n for some natural numbers m and n satisfying
GCD(m,n) = 1. Thus, m/n is mapped to the point (m,n) ∈ N2. For example,
1 = 1/1 is mapped to the point (1, 1). Furthermore, the negative counterpart
of m/n, −m/n can then be safely embedded in (2m, 2n). For example, −1 =
−1/1 is mapped to (2, 2). Finally, 0 can be mapped to (3, 3). Using the results
in the previous sections, we then have

|Q| ≤ |N2| = ℵ0.

On the other hand, N is a subset of Q, so we also have

|Q| ≥ |N| = ℵ0.

Using the result in the previous section, we therefore have

|Q| = ℵ0.

In other words, the set of the rational numbers, although seeming larger than
the set of the natural numbers, is actually of the same size: it is enumerable
as well.

8.15 Arbitrarily Long Finite Sequences

The enumerability of Q implies that every infinite subset of it is enumerable
as well. For example, consider the set S of all arbitrarily long finite sequences
of 0’s and 1’s. Because S is infinite, we clearly have

|S| ≥ |N| = ℵ0.

Furthermore, each finite sequence in S, once placed after the decimal point,
represents uniquely a finite decimal fraction, which is actually a rational num-
ber. Thus, we also have

|S| ≤ |Q| = ℵ0.

By combining these results, we conclude that

|S| = ℵ0.

In the following, we’ll meet sets that are genuinely greater than N in the
sense that they have cardinality greater than ℵ0. Such sets are called nonenu-
merable. For example, we’ll see below that the set of infinite sequences of 0’s
and 1’s is nonenumerable.
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8.16 Function Sets

A function can be viewed as a mapping that maps each element in one set
to an element in another set, or a machine that takes an input to produce an
output. Commonly, if x denotes the input element and f denotes the function,
then f(x) denotes the output produced by f from x, or the target element to
which x is mapped by f .

The most elementary functions are Boolean functions, which map each el-
ement either to 0 or to 1. More explicitly, a Boolean function f from a set S
to the set that contains the two elements 0 and 1,

f : S → {0, 1},

is defined for each element s ∈ S to produce the output f(s), which can be
either 0 or 1, according to the particular definition of the function.

The set of all such functions can be imagined as an infinite “list” of duplicate
copies of {0, 1}, each associated with a particular element from S:

{0, 1}, {0, 1}, {0, 1}, . . . (|S| times).

A particular function f picks a particular number, either 0 or 1, from each
duplicate copy of {0, 1} associated with each s ∈ S to define f(s). This is why
the set of all such functions is denoted by

{0, 1}S ≡ {f | f : S → {0, 1}}.

For example,

{0, 1}N = {0, 1}, {0, 1}, {0, 1}, . . . (ℵ0 times)

can be viewed as the set of all the infinite sequences of 0’s and 1’s. Indeed,
each sequence of the form

a1, a2, a3, . . .

in which ai is either 0 or 1 for all i ≥ 1 can be interpreted as a function
f : N → {0, 1} for which f(i) = ai for all i ≥ 1. In the following, we’ll show
that the function set {0, 1}N is nonenumerable.

8.17 Cardinality of Function Sets

Clearly, S is equivalent to a subset of {0, 1}S . Indeed, one can define a one-
to-one mapping M from S onto a subset of {0, 1}S by letting M(s) (for each
element s ∈ S) be the function that produces the value 1 only for the input s:
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M(s)(t) ≡
{

1 if t = s
0 if t ∈ S, t 6= s.

In other words,
|{0, 1}S | ≥ |S|.

Let us show that this inequality is actually strict, namely, that

|{0, 1}S | > |S|.

This is proved by contradiction. Assume momentarily that there were a one-
to-one mapping M from S onto {0, 1}S . For each element s ∈ S, M(s) would
then be a function from S to {0, 1}. In particular, when it takes the input
s, this function produces the output M(s)(s), which is either 0 or 1. Let us
define a new function f : S → {0, 1} that disagrees with this output:

f(s) ≡ 1−M(s)(s) 6= M(s)(s), s ∈ S.

As a consequence, f cannot be in the range of M , in contradiction to our mo-
mentary assumption that M is onto {0, 1}S . Thus, our momentary assumption
must have been false, which implies that

|{0, 1}S | > |S|,

as asserted.
Using the notation

|A||B| ≡ |AB |
for any two sets A and B, we therefore have

2|S| = |{0, 1}S | > |S|.

Below we use this result to obtain nonenumerable sets.

8.18 Nonenumerable Sets

Consider the set S of infinite sequences of 0’s and 1’s. As we have seen
above,

S = {0, 1}N.

Therefore, we have
|S| = 2ℵ0 > ℵ0.

This cardinality is also denoted by

ℵ ≡ 2ℵ0 .

In the following, we’ll show that this is also the cardinality of the set of the
real numbers.
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8.19 Cardinality of the Real Axis

To obtain the cardinality of the real axis R, we first need to have the
cardinality of the unit interval that lies in it. Let [0, 1] denote the closed unit
interval of real numbers (with the endpoints):

[0, 1] ≡ {x ∈ R | 0 ≤ x ≤ 1}.

Furthermore, let (0, 1) denote the open unit interval (without the endpoints):

(0, 1) ≡ {x ∈ R | 0 < x < 1}.

Note that round parentheses are used to denote an open interval, whereas
square parentheses are used to denote a closed interval. Both of these kinds
of parentheses are different from the ones used in {0, 1}, the set that contains
the two elements 0 and 1 only.

Now, each infinite sequence of 0’s and 1’s, once placed after the decimal
point, represents uniquely an infinite decimal fraction in [0, 1]. Thus, we have

|[0, 1]| ≥ |{0, 1}N| = 2ℵ0 = ℵ.

On the other hand, using basis 2, each real number in [0, 1] can be represented
as a binary fraction, with an infinite sequence of 0’s and 1’s behind the point.
As a matter of fact, infinite binary fractions are represented uniquely by such
a sequence, whereas finite binary fractions can be represented by two possible
sequences: one ends with infinitely many 0’s, and the other ends with infinitely
many 1’s. Thus, there exists a one-to-one mapping from [0, 1] onto a subset
of {0, 1}N, or

|[0, 1]| ≤ |{0, 1}N| = 2ℵ0 = ℵ.
Combining the above two inequalities, we have

|[0, 1]| = |{0, 1}N| = 2ℵ0 = ℵ.

Furthermore, [0, 1] is also equivalent to the entire real axis R. Indeed, [0, 1]
is a subset of R, which implies that

|R| ≥ |[0, 1]| = ℵ.

Furthermore, the function

tan(π(x− 1/2)) : (0, 1)→ R

is a one-to-one mapping from the open unit interval (0, 1) onto R. Thus, R is
equivalent to a subset of [0, 1], or

|R| ≤ |[0, 1]| = ℵ.

By combining these two inequalities, we have

|R| = |[0, 1]| = ℵ.
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8.20 Cardinality of the Plane

At first glance, it would seem as if the Cartesian plane R2 has a larger
cardinality than the real axis R. Below we will see that this is not so.
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FIGURE 8.9: The point (x, y) in the unit square is mapped to the number
M((x, y)) in the unit interval whose binary representation is combined from the

binary representations of x and y.

To this end, let us first show that the closed unit square

[0, 1]2 = {(x, y) ∈ R2 | 0 ≤ x, y ≤ 1}

has the same cardinality as the closed unit interval [0, 1]. Indeed, since [0, 1]
is equivalent to the lower edge of [0, 1]2, we have that

|[0, 1]2| ≥ |[0, 1]| = ℵ.

Furthermore, each of the coordinates x and y in each point (x, y) ∈ [0, 1]2

can be represented uniquely as an infinite binary fraction with an infinite
sequence of 0’s and 1’s behind the point that doesn’t end with infinitely many
1’s. Now, these infinite sequences can be combined to form a new infinite
sequence of 0’s and 1’s whose odd-numbered digits are the same as the digits
in the binary representation of x, and its even-numbered digits are the same as
the digits in the binary representation of y. Once placed behind the point, this
new sequence represents a unique number in [0, 1]. This forms a one-to-one
mapping from [0, 1]2 onto a subset of [0, 1], or

|[0, 1]2| ≤ |[0, 1]| = ℵ.

By combining these two inequalities, we have
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|[0, 1]2| = |[0, 1]| = ℵ.

The above proof uses the binary representation of real numbers between 0
and 1. In particular, it combines two such representations to produce a new
representation for a new real number between 0 and 1. This method of proof
can also be used for natural numbers. In fact, the binary representations of
two natural numbers can be combined to form a new binary representation
for a new natural number. This may lead to a one-to-one mapping from N2

into N, or to an alternative proof for the inequality

|N2| ≤ |N|,

which has already been proved in Figure 8.6 above.
Let us now show that the entire Cartesian plane is also of cardinality ℵ.

Indeed, since the closed unit square is a subset of the Cartesian plane, we have

|R2| ≥ |[0, 1]2| = ℵ.

Furthermore, the open unit square is equivalent to the entire Cartesian plane
by the one-to-one mapping

tan(π(x− 1/2)) tan(π(y − 1/2)) : (0, 1)2 → R2,

which means that
|R2| ≤ |[0, 1]2| = ℵ.

By combining these two inequalities, we have

|R2| = |[0, 1]2| = ℵ.

8.21 Cardinality of the Multidimensional Space

The above method of proof can be used to show that the finite-dimensional
space Rn is also of cardinality ℵ for every fixed natural number n. However,
this method of proof is not good enough to obtain also the cardinality of the
infinite-dimensional space RN, which can be imagined as an infinite list of
duplicate copies of R:

R, R, R, ldots (ℵ0 times)

or, in other words, the set of all the functions from N to R:

RN = {f | f : N→ R}.

In order to have the cardinality of both finite-dimensional and infinite-
dimensional spaces, we need to develop more general tools.
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Let A, B, and C be some given sets. Let us show that

|(AB)C | = |ABC |.

To this end, let us define a one-to-one mapping M from

(AB)C = {f | f : C → AB}

onto
ABC = {f | f : BC → A}.

To do this, consider a particular function f : C → AB in (AB)C . For each
element c ∈ C, f(c) is by itself a function from B to A, i.e.,

f(c)(b) ∈ A, b ∈ B.

Then, the mapped function M(f) : BC → A is defined naturally by

M(f)((b, c)) = f(c)(b).

Clearly, M is indeed a one-to-one mapping onto ABC , as required. This
completes the proof of the above equality of cardinalities:

|(AB)C | = |ABC |.

Let us use this result to obtain the cardinality of multidimensional spaces.
First, the cardinality of the finite-dimensional space Rn is

|Rn| = |({0, 1}N)n| = |{0, 1}nN| = |{0, 1}N| = ℵ.

Furthermore, the cardinality of the infinite-dimensional space is

|RN| = |({0, 1}N)N| = |{0, 1}N
2
| = |{0, 1}N| = ℵ.

More concisely, we have
ℵℵ0 = ℵn = ℵ.

Thus, the cardinality of both finite-dimensional and infinite-dimensional
spaces is not larger than that of the original real axis. To have cardinalities
larger than ℵ, we must therefore turn to sets of functions defined on R.

8.22 Larger Cardinalities

The next cardinality, which is larger than ℵ, is the cardinality of the set of
binary functions defined on the real axis:
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2ℵ = |{0, 1}R| > |R| = ℵ.

Is there a yet larger cardinality? Well, ℵℵ, the cardinality of the set of
functions

{f | f : R→ R},

seems to be a good candidate. However, it is not really larger than 2ℵ:

ℵℵ = |RR| = |({0, 1}N)R| = |{0, 1}NR| ≤ |{0, 1}R
2
| = |{0, 1}R| = 2ℵ.

Thus, to have a cardinality larger than 2ℵ we must turn to its exponent,
namely, the cardinality of the set of functions defined on it:

22ℵ > 2ℵ.

Is there a yet greater cardinality? Let’s try (2ℵ)2
ℵ
:

(2ℵ)2
ℵ

= 2ℵ·2
ℵ
≤ 22ℵ·2ℵ = 2(2ℵ)2 = 222ℵ

= 22ℵ .

Thus, (2ℵ)2
ℵ

is not really a greater cardinality. To have a cardinality greater
than 22ℵ , we must therefore turn to its exponent:

222ℵ

> 22ℵ ,

and so on.

8.23 Sets of Zero Measure

Enumerable sets have zero measure in the sense that, given an arbitrarily
small number ε > 0, they can be covered completely by open intervals (or open
squares in 2-D) whose total size is no more than ε. For example, the natural
numbers in N can be covered as follows (Figure 8.10): The first number, 1, is
covered by the open interval

(1− ε/4, 1 + ε/4).

The second number, 2, is covered by the open interval

(2− ε/8, 2 + ε/8).

The third number, 3, is covered by the open interval

(3− ε/16, 3 + ε/16),

and so on. The total size (or length) of the intervals is
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ε

2
+

ε

4
+

ε

8
+ · · · = ε

2

∞∑
i=0

(1/2)i =
ε

2
1

1− 1/2
= ε.

Thus, N has been covered completely by open intervals with total length ε.
Because ε can be chosen to be arbitrarily small, N has the same size as that
of one point on the real axis. This means that N has indeed a zero measure
in the real axis.

1 2 3 4 5

q q q q q · · ·

FIGURE 8.10: The set of the natural numbers is of zero measure in the real
axis because, for an arbitrarily small ε > 0, it can be covered by open intervals

with total length as small as ε.

Similarly, N2 can be covered completely by open squares whose total area
is no more than ε (Figure 8.11). Indeed, each point (i, j) ∈ N2 can be covered
by a small open square of dimensions

√
ε/2i by

√
ε/2j .

Clearly, the total area of these squares is

ε
∑

(i,j)∈N2

(1/2)i+j = ε
∞∑

i=1

(1/2)i
∞∑

j=1

(1/2)j = ε.

Below we’ll see that there are not only enumerable sets but also nonenumer-
able sets of zero measure.
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FIGURE 8.11: The infinite grid N2 is of zero measure in the Cartesian plane
because, for an arbitrarily small ε > 0, it can be covered by open squares with

total area as small as ε.

8.24 Cantor’s Set

The smallest nonenumerable set that we’ve encountered so far is the unit
interval. The measure of this interval in the real axis (or its length) is equal
to 1. Is there a yet smaller nonenumerable set whose measure in the real axis
is as small as zero?

0 11/3 2/3

( )( () )

FIGURE 8.12: Cantor’s set is obtained from the closed unit interval by
dropping from it the open subinterval (1/3, 2/3), then dropping the open

subintervals (1/9, 2/9) and (7/9, 8/9) from the remaining closed subintervals
[0, 1/3] and [2/3, 1], and so on.
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Yes, there exists such a set: Cantor’s set. This set is constructed as follows.
Consider the closed unit interval [0, 1]. Drop from it its middle third, namely,
the open subinterval (1/3, 2/3) (Figure 8.12). In other words, if each point
in the original interval is represented in base 3 by an infinite sequence of
0’s, 1’s, and 2’s behind the point, then dropping this subinterval would mean
eliminating the numbers with the digit 1 right after the point. For example,
the number 1/3, which has not been dropped, can be represented in base 3
by the infinite fraction

1/3 = 0.022222 . . . .

Furthermore, the number 2/3, which has not been dropped, can be represented
in base 3 as

2/3 = 0.200000 . . . .

The remaining subintervals are [0, 1/3] and [2/3, 1]. In the next stage, the
middle third is dropped from each of them. More explicitly, the open intervals
(1/9, 2/9) and (7/9, 8/9) are dropped. In base 3, this means that the numbers
whose second digit after the point is 1 are eliminated too.

The remaining intervals are the closed intervals [0, 1/9], [2/9, 3/9], [2/3, 7/9],
and [8/9, 1]. In the next stage, the open subintervals that are the middle
third of each of these intervals are dropped as well. In terms of the base-3
representation, this means eliminating all the fractions whose third digit after
the point is 1.

The process goes on and on in a similar way. In each stage, twice as many
open subintervals are dropped. However, the length of each dropped subin-
terval is one third of the length of an interval that has been dropped in the
previous stage. Thus, the total lengths of all the dropped subintervals is 2/3
times the total lengths of the subintervals dropped in the previous stage.

In terms of the base-3 representation, the fractions dropped in the ith stage
are those fractions whose ith digit after the point is 1. Thus, the fractions that
remain once this infinite process is complete are those that are represented in
base 3 by a sequence of 0’s and 2’s after the point.

These remaining numbers form the set known as Cantor’s set. Clearly, it
is equivalent to {0, 1}N by the mapping that replaces each digit 2 by digit 1.
Furthermore, its measure in the real axis is as small as zero. Indeed, let us
sum up the lengths of the subintervals that have been dropped throughout
the entire process:

1
3

∞∑
i=0

(2/3)i =
1
3
· 1
1− 2/3

= 1.

Since the process has started from the unit interval, the set that remains after
all these subintervals have been dropped must be of size zero. Thus, Cantor’s
set is indeed a nonenumerable set of zero measure, as required.
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8.25 Exercises

1. Interpret elements and sets as some abstract objects with the relation ∈
between them: e ∈ A means that the element e belongs to the set A.

2. Interpret sets as some abstract objects with the relation ⊂ between them:
A ⊂ B means that every element in A lies in B as well.

3. Show that A = B if and only if A ⊂ B and B ⊂ A.
4. Let A, B, and C be some sets. Show that

A ∩ (B ∪ C) = (A ∩B) ∪ (A ∩ C).

5. Furthermore, show that

A ∪ (B ∩ C) = (A ∪B) ∩ (A ∪ C).

6. Show that the cardinality of the even numbers is the same as the cardi-
nality of all the natural numbers.

7. Show that the cardinality of the odd numbers is the same as the cardinality
of all the natural numbers.

8. Use the mapping x → (b − a)x + a to show that the cardinality of any
closed interval of the form [a, b] is the same as the cardinality of the closed
unit interval [0, 1].

9. Use the mapping x → (b − a)x + a to show that the cardinality of any
open interval of the form (a, b) is the same as the cardinality of the open
unit interval (0, 1).

10. Use the mapping x→ tan(x) to show that the open interval (−π/2, π/2)
is equivalent to the entire real axis.

11. Show in two different ways that the set of the rational numbers is enu-
merable.

12. Show that the unit interval is nonenumerable.
13. Show in two different ways that the unit square is equivalent to the unit

interval.
14. What is a function?
15. Show that the set of the binary functions defined on the unit interval has

a larger cardinality than the unit interval.
16. Show that the set of the rational numbers has a zero measure in the real

axis.
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Chapter 9

Vectors and Matrices

As we have seen above, sequences are ordered enumerable sets. This is the
basis for the definition of vectors and matrices [28].

A vector is a finite sequence of numbers (usually real numbers). For example,
in the Cartesian plane, a vector can be viewed as an arrow from the origin
to some point (x, y) ∈ R2. Thus, the vector can be denoted simply by (x, y).
Thus, in the plane, a vector is a very short sequence of two components only: x
and y. In the three-dimensional space, on the other hand, a vector is denoted
by a longer sequence of three components: (x, y, z).

Vectors, however, are more than mere sequences: they also have linear al-
gebraic operations defined on them, such as addition and multiplication. Fur-
thermore, below we also define another special kind of finite sequences: matri-
ces, along with some useful linear algebraic operations between matrices and
matrices and between matrices and vectors.

9.1 Two-Dimensional Vectors

Vectors are basically finite sets of numbers. More precisely, they are ordered
finite sets, or finite sequences.










�(x, y)

x

y p

FIGURE 9.1: The vector (x, y) starts at the origin (0, 0) and points to the
point (x, y) in the Cartesian plane.
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For example, a vector in the Cartesian plane is an arrow leading from the
origin (0, 0) to some point (x, y) ∈ R2 (Figure 9.1). Thus, the vector can be
denoted simply by the sequence (x, y) containing the two components x (the
horizontal coordinate) and then y (the vertical coordinate).

�
�

�
�

��








�

�
�

�3

�
�

�3

(x̂, ŷ)

(x, y) + (x̂, ŷ)

x

y p

FIGURE 9.2: Adding the vectors (x, y) and (x̂, ŷ) using the parallelogram
rule.

9.2 Adding Vectors

Two vectors (x, y) and (x̂, ŷ) can be added to each other according to the
parallelogram rule. More specifically, the original vectors (x, y) and (x̂, ŷ) are
completed in to a parallelogram, whose diagonal starts at the origin and points
to the new point (x, y) + (x̂, ŷ) (Figure 9.2). This diagonal is the required
vector, the sum of the two original vectors.

From an algebraic point of view, the parallelogram rule means that the
vectors are added component by component:

(x, y) + (x̂, ŷ) ≡ (x + x̂, y + ŷ).

In other words, each coordinate in the sum vector is just the sum of the
corresponding coordinates in the original vectors. This algebraic definition is
most useful in calculations, and can be easily extended to spaces of higher
dimension below.
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9.3 Multiplying a Vector by a Scalar

A vector can also be multiplied by a numerical factor (scalar). In this oper-
ation, the vector is stretched by this factor, while keeping its original direction
unchanged. In other words, the length of the vector is multiplied by the factor,
but the proportion between its coordinates remains the same (Figure 9.3).










�










�

2(x, y)

(x, y)

x

y p

FIGURE 9.3: Multiplying the vector (x, y) by the scalar 2, or stretching it by
factor 2, to obtain the new vector 2(x, y), which is twice as long.

In algebraic terms, this leads to the formula

a(x, y) ≡ (ax, ay),

where a is a real number. This algebraic formula is particularly useful in
calculations, and can be easily extended to the multidimensional case below.

9.4 Three-Dimensional Vectors

In the three-dimensional Cartesian space, a vector is an arrow leading from
the origin (0, 0, 0) to some point (x, y, z) ∈ R3 (Figure 9.4). Thus, the vector
can be denoted by the sequence (x, y, z), which contains three components:
first x (the horizontal coordinate), then y (the vertical coordinate), and finally
z (the height coordinate).

As in the plane, two vectors in the space are added coordinate by coordinate:

(x, y, z) + (x̂, ŷ, ẑ) ≡ (x + x̂, y + ŷ, z + ẑ).

Furthermore, a vector is multiplied by a scalar coordinate by coordinate:

a(x, y, z) ≡ (ax, ay, az).
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A
AU

�
�

�
�

�

(x, y, z)

yz

x p
FIGURE 9.4: The vector (x, y, z) starts at the origin (0, 0, 0) and points to

the point (x, y, z) in the three-dimensional Cartesian space.

Below we extend these definitions also to n-dimensional spaces for any natural
number n.

9.5 Multidimensional Vectors

In the general case, an n-dimensional vector is a finite sequence of n real
numbers:

v ≡ (v1, v2, v3, . . . , vn),

where n is some fixed natural number (the dimension) and v1, v2, . . . , vn are
some real numbers. We then say that v is a vector in the n-dimensional space
Rn. This way, the above 2-dimensional Cartesian plane and 3-dimensional
Cartesian space are just special cases of Rn, with n = 2 and n = 3, respec-
tively.

As in the previous sections, the addition of another vector

u ≡ (u1, u2, . . . , un) ∈ Rn

to v is done component by component:

v + u ≡ (v1 + u1, v2 + u2, . . . , vn + un).

Furthermore, this operation is linear in the sense that the commutative law
applies:

v + (u + w) = (v1 + (u1 + w1), v2 + (u2 + w2), . . . , vn + (un + wn))
= ((v1 + u1) + w1, (v2 + u2) + w2, . . . , (vn + un) + wn)
= (v + u) + w,

where w ≡ (w1, w2, . . . , wn) is a vector in Rn as well.
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The zero vector (the analogue of the origin in the 2-d Cartesian plane and
in the 3-d Cartesian space) is the vector whose all components vanish:

0 ≡ (0, 0, 0, . . . , 0).

This vector has the special property that it can be added to every vector
without changing it whatsoever:

0 + v = v + 0 = v

for every vector v ∈ Rn.
Moreover, the multiplication of a vector by a scalar a ∈ R is also done

component by component:

av ≡ (av1, av2, . . . , avn).

This operation is commutative in the sense that

b(av) = b(av1, av2, . . . , avn) = (bav1, bav2, . . . , bavn) = (ba)v.

Furthermore, it is distributive in terms of the scalars that multiply the vector:

(a + b)v = ((a + b)v1, (a + b)v2, . . . , (a + b)vn)
= (av1 + bv1, av2 + bv2, . . . , avn + bvn)
= av + bv,

as well as in terms of the vectors that are multiplied by the scalar:

a(v + u) = (a(v1 + u1), a(v2 + u2), . . . , a(vn + un))
= (av1 + au1, av2 + au2, . . . , avn + aun)
= av + au.

This completes the definition of the vector space Rn and the linear alge-
braic operations in it. Similarly, one could define the vector space Cn: the only
difference is that in Cn the components in the vectors, as well as the scalars
that multiply them, can be not only real numbers but also complex numbers.
It can be easily checked that the above commutative and distributive laws
apply to Cn as well, so the algebraic operations in it remain linear. In fact,
the algebraic operations in Cn can be viewed as extensions of the correspond-
ing operations in Rn. Thus, the larger vector space Cn can be viewed as an
extension of the smaller vector space Rn ⊂ Cn.

9.6 Matrices

An m by n (or m × n) matrix A is a finite sequence of n m-dimensional
vectors:
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A ≡
(
v(1) | v(2) | v(3) | · · · | v(n)

)
where v(1), v(2), . . . , v(n) are vectors in Rm for some fixed natural numbers m
and n.

The jth vector, v(j) (1 ≤ j ≤ n), is called the jth column of the matrix A,
and takes the column form:

v(j) ≡


v
(j)
1

v
(j)
2

v
(j)
3
...

v
(j)
m

 .

The ith component in v(j) is called the (i, j)th element in the matrix A,
and is denoted by

ai,j ≡ v
(j)
i .

For example, if m = 3 and n = 4, then A takes the form

A =

a1,1 a1,2 a1,3 a1,4

a2,1 a2,2 a2,3 a2,4

a3,1 a3,2 a3,3 a3,4

 .

In this form, A may also be viewed as a sequence of three rows, each containing
four numbers.

9.7 Adding Matrices

An m× n matrix

B ≡
(
u(1) | u(2) | u(3) | · · · | u(n)

)
is added to the above matrix A column by column:

A + B ≡
(
v(1) + u(1) | v(2) + u(2) | v(3) + u(3) | · · · | v(n) + u(n)

)
.

In other words, if B is denoted in its elementwise form

B = (bi,j)1≤i≤m,1≤j≤n,

then it is added to A element by element:

A + B = (ai,j + bi,j)1≤i≤m,1≤j≤n.

It is easy to check that this operation is commutative in the sense that

(A + B) + C = A + (B + C),

where C is another m× n matrix.
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9.8 Multiplying a Matrix by a Scalar

The multiplication of a matrix A by a real number r ∈ R is done element
by element:

rA ≡ (rai,j)1≤i≤m,1≤j≤n.

Clearly, this operation is commutative:

q(rA) ≡ q(rai,j)1≤i≤m,1≤j≤n = (qrai,j)1≤i≤m,1≤j≤n = (qr)A,

where q ∈ R is another scalar. Furthermore, it is distributive both in terms of
the scalars that multiply the matrix:

(q + r)A = qA + rA,

and in terms of the matrix multiplied by the scalar:

r(A + B) = rA + rB.

9.9 Matrix times Vector

Let us define the operation in which the matrix

A =
(
v(1) | v(2) | · · · | v(n)

)
multiplies the column vector

w =


w1

w2

...
wn

 .

The result of this operation is the m-dimensional column vector that is ob-
tained from summing the columns of the matrix A after they have been mul-
tiplied by the scalars that are the components of w:

Aw ≡ w1v
(1) + w2v

(2) + · · ·+ wnv(n) =
n∑

j=1

wjv
(j).

Thanks to the fact that the dimension of w is the same as the number of
columns in A, this sum is indeed well defined. Note that the dimension of Aw
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is not necessarily the same as the dimension of the original vector w. Indeed,
w ∈ Rn, whereas Aw ∈ Rm.

Let us now look at the particular components in Aw. In fact, the ith com-
ponent in Aw (1 ≤ i ≤ m) is

(Aw)i =
n∑

j=1

wjv
(j)
i =

n∑
j=1

ai,jwj .

Clearly, the matrix-times-vector operation is commutative in the sense that,
for a scalar r ∈ R,

A(rw) = r(Aw) = (rA)w.

Furthermore, it is distributive both in terms of the matrix that multiplies the
vector:

(A + B)w = Aw + Bw,

and in terms of the vector that is multiplied by the matrix:

A(w + u) = Aw + Au,

where u is another n-dimensional vector.

9.10 Matrix times Matrix

Let B be an l × m matrix, where l is a natural number. The product B
times A is obtained by multiplying the columns of A one by one:

BA ≡
(
Bv(1) | Bv(2) | · · · | Bv(n)

)
,

where the v(j)’s are the columns of A. Thanks to the fact that the number
of rows in A is the same as the number of columns in B, these products are
indeed well defined, and the result BA is an l × n matrix.

Let i and k be natural numbers satisfying 1 ≤ i ≤ l and 1 ≤ k ≤ n. From
the above, the (i, k)th element in BA is

(BA)i,k = (Bv(k))i =
m∑

j=1

bi,jv
(k)
j =

m∑
j=1

bi,jaj,k.

From this formula, it follows that the product of matrices is distributive
both in terms of the matrix on the left:

(B + B̂)A = BA + B̂A

(where B̂ is another l ×m matrix), and in terms of the matrix on the right:
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B(A + Â) = BA + BÂ

(where Â is another m× n matrix).
Let us show that the product of matrices is also commutative. To this end,

let
C = (ci,j)

be a k × l matrix, where k is a fixed natural number. Because the number of
columns in C is the same as the number of rows in B and in BA, the products
C(BA) and (CB)A are well defined. In particular, let us calculate the (s, t)th
element in C(BA), where s and t are natural numbers satisfying 1 ≤ s ≤ k
and 1 ≤ t ≤ n:

(C(BA))s,t =
l∑

i=1

cs,i

m∑
j=1

bi,jaj,t

=
l∑

i=1

m∑
j=1

cs,ibi,jaj,t

=
m∑

j=1

l∑
i=1

cs,ibi,jaj,t

=
m∑

j=1

(
l∑

i=1

cs,ibi,j

)
aj,t

=
m∑

j=1

(CB)s,jaj,t

= ((CB)A)s,t.

Since this is true for every element (s, t) in the triple product, we have

C(BA) = (CB)A.

In other words, the multiplication of matrices is not only distributive but also
commutative.

9.11 The Transpose of a Matrix

The transpose of A, denoted by At, is the n × m matrix whose (j, i)th
element (1 ≤ i ≤ m, 1 ≤ j ≤ n) is the same as the (i, j)th element in A:

At
j,i = ai,j .
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For example, if A is the 3× 4 matrix

A =

a1,1 a1,2 a1,3 a1,4

a2,1 a2,2 a2,3 a2,4

a3,1 a3,2 a3,3 a3,4

 ,

then At is the 4× 3 matrix

At =


a1,1 a2,1 a3,1

a1,2 a2,2 a3,2

a1,3 a2,3 a3,3

a1,4 a2,4 a3,4

 .

From the above definition, it clearly follows that

(At)t = A.

Note that, if the number of columns in B is the same as the number of rows
in A, then the number of columns in At is the same as the number of rows in
Bt, so the product AtBt is well defined. Let us show that

(BA)t = AtBt.

To this end, consider the (k, i)th element in (BA)t for some 1 ≤ i ≤ l and
1 ≤ k ≤ n:

(BA)t
k,i = (BA)i,k =

m∑
j=1

bi,jaj,k =
m∑

j=1

At
k,jB

t
j,i = (AtBt)k,i.

9.12 Symmetric Matrices

So far, we have considered rectangular matrices, whose number of rows m is
not necessarily the same as the number of columns n. In this section, however,
we focus on square matrices, whose number of rows is the same as the number
of columns: m = n. This number is then called the order of the matrix.

A square matrix A is symmetric if it is equal to its transpose:

A = At.

In other words, for 1 ≤ i, j ≤ n, the (i, j)th element in A is the same as the
(i, j)th element in At:

ai,j = aj,i.

The main diagonal in the square matrix A contains the elements ai,i, whose
column index is the same as their row index. The identity matrix of order n,
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denoted by I, is the square matrix whose main-diagonal elements are all equal
to 1, whereas its other elements (the off-diagonal elements) are all equal to 0:

I ≡


1 0

1
. . .

0 1

 ,

where the blank spaces in the above matrix contain zero elements as well.
Clearly, the identity matrix I is symmetric. In fact, I is particularly impor-

tant, because it is a unit matrix in the sense that it can be applied to any
n-dimensional vector v without changing it whatsoever:

Iv = v.

Moreover, I is also a unit matrix in the sense that it can multiply any matrix
A of order n without changing it whatsoever:

IA = AI = A.

9.13 Hermitian Matrices

So far, we have considered real matrices, whose elements are real numbers
in R. This concept can be extended to complex matrices, whose elements may
well be complex numbers in C. For such matrices, all the properties discussed
so far in this chapter remain valid. The concept of the transpose, however,
should be replaced by the more general notion of the adjoint or Hermitian
conjugate.

Recall that the complex conjugate of a complex number

c = a + ib

(where a and b are some real numbers and i =
√
−1) is defined by

c̄ ≡ a− ib.

This way, we have

cc̄ = (a + ib)(a− ib) = a2 − i2b2 = a2 + b2 = |c|2,

where the absolute value of the complex number c is defined by

|c| ≡
√

a2 + b2.
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Note that if c happens to be a real number (b = 0), then it remains unchanged
under the complex-conjugate operation:

c̄ = a = c.

Thus, the complex-conjugate operator is reduced to the identity operator on
the real axis R ⊂ C.

Recall also that the complex-conjugate operation is linear in the sense that
the complex conjugate of the sum of two complex numbers c and d is the sum
of the complex conjugate of c and the complex conjugate of d:

¯c + d = c̄ + d̄,

and the complex conjugate of their product is equal to the product of their
complex conjugates:

c̄dc̄ · d̄.

Indeed, the latter property can be proved easily using the polar representation
of complex numbers.

The Hermitian conjugate of the m × n matrix A, denoted by Ah, is the
n ×m matrix whose (j, i)th element (1 ≤ i ≤ m, 1 ≤ j ≤ n) is the complex
conjugate of the (i, j)th element in A:

Ah
j,i = āi,j .

Because the complex-conjugate operation has no effect on real numbers,
this definition agrees with the original definition of the transpose operator for
real matrices, and can thus be considered as a natural extension of it to the
case of complex matrices.

As in the case of the transpose matrix, it is easy to see that

(Ah)h = A

and that
(BA)h = AhBh.

When complex square matrices of order m = n are considered, it makes
sense to introduce the notion of an Hermitian matrix, which is equal to its
Hermitian conjugate:

A = Ah.

In other words, the complex square matrix A is Hermitian if its (i, j)th element
(for every 1 ≤ i, j ≤ n) is equal to the (i, j)th element in its Hermitian
conjugate:

ai,j = āj,i.

In particular, the main-diagonal elements in a Hermitian matrix must be real:

ai,i = āi,i.
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9.14 Inner Product

A column vector of dimension n can actually be viewed as an n× 1 matrix.
For example, if u and v are two column vectors in Cn, then

uh = (ū1, ū2, . . . , ūn).

In other words, uh is an 1 × n matrix. Since the number of columns in this
matrix is the same as the number of rows in the n× 1 matrix v, the product
uhv is well defined as a product of two matrices. The result of this product is
a scalar (complex number), known as the inner product of u and v, denoted
by

(u, v) ≡ uhv =
n∑

j=1

ūjvj .

(Note that, when u is a real vector with real components, the above inner
product is equal to the so-called real inner product, defined by

utv =
n∑

j=1

ujvj .)

From the above definition, it follows that, for every complex scalar c ∈ C,

(cu, v) = c̄(u, v)

and
(u, cv) = c(u, v).

Note that the inner product is a skew-symmetric operation in the sense
that changing the order of the vectors in the inner product yields the complex
conjugate of the original inner product:

(v, u) =
n∑

j=1

v̄juj =
¯n∑

j=1

¯jvju = ¯(u, v).

Furthermore, if u and v happen to be real vectors (u, v ∈ Rn), then their inner
product is a real number:

(u, v) =
n∑

j=1

ūjvj =
n∑

j=1

ujvj ∈ R.

Note that the inner product of v with itself is

(v, v) =
n∑

j=1

v̄jvj =
n∑

j=1

|vj |2 ≥ 0.
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In fact, (v, v) vanishes if and only if all the components vj vanish:

(v, v) = 0 ⇔ v = 0.

Therefore, it makes sense to define the norm of v, denoted by ‖v‖, as the
square root of its inner product with itself:

‖v‖ ≡
√

(v, v).

This way, we have
‖v‖ ≥ 0

and
‖v‖ = 0 ⇔ v = 0.

This definition of norm has the desirable property that, for any complex scalar
c ∈ C, stretching v by factor c leads to enlarging the norm by factor |c|:

‖cv‖ =
√

(cv, cv) =
√

c̄c(v, v) =
√
|c|2(v, v) = |c|

√
(v, v) = |c| · ‖v‖.

In particular, if v is a nonzero vector, then ‖v‖ > 0, so one may choose
c = 1/‖v‖ to obtain the (normalized) unit vector v/‖v‖, namely, the vector
of norm 1 that is proportional to the original vector v.

9.15 Norms of Vectors

The norm ‖v‖ defined above is also called the l2-norm of v and denoted by
‖v‖2, to distinguish it from other useful norms: the l1-norm, defined by

‖v‖1 ≡
n∑

i=1

|vi|,

and the l∞- or maximum norm, defined by

‖v‖∞ ≡ max
1≤i≤n

|vi|.

Here, however, we use mostly the l2-norm defined in the previous section. This
is why we denote it simply by ‖v‖ rather than ‖v‖2.

9.16 Inner Product and the Hermitian Conjugate

Let A be an m× n matrix, and assume that u is an m-dimensional vector
and that v is an n-dimensional vector. Then, the product Av is well defined.
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As a matter of fact, Av is an m-dimensional vector, so the inner product
(u, Av) is a well defined scalar. Furthermore, Ah is an n ×m matrix, so the
product Ahu is well defined. In fact, Ahu is an n-dimensional vector, so the
inner product (Ahu, v) is well defined. Using the commutativity of the triple
product of matrices, we therefore have

(u, Av) = uh(Av) = (uhA)v = (Ahu)hv = (Ahu, v).

In particular, if m = n and A is Hermitian, then

(u, Av) = (Au, v)

for any two n-dimensional vectors u and v.

9.17 Orthogonal Matrices

Two n-dimensional vectors u and v are orthogonal to each other if their
inner product vanishes:

(u, v) = 0.

Furthermore, u and v are also orthonormal if they are not only orthogonal to
each other but also unit vectors in the sense that their norm is equal to 1:

‖u‖ = ‖v‖ = 1.

A square matrix A of order n is called orthogonal if its columns are or-
thonormal in the sense that, for 1 ≤ i, j ≤ n,

(v(i), v(j)) = 0

and
‖v(j)‖ = 1,

where the v(j)’s are the columns of A. In other words, the (i, k)th element in
the product AhA is equal to

(AhA)i,k =
n∑

j=1

(Ah)i,jaj,k

=
n∑

j=1

āj,iaj,k

=
n∑

j=1

v̄
(i)
j v

(k)
j

= (v(i), v(k)) =
{

1 if i = k
0 if i 6= k.
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In other words, if A is orthogonal, then AhA is the identity matrix:

AhA = I.

This can also be written as
Ah = A−1

or
A = (Ah)−1.

Therefore, we also have
AAh = I.

9.18 Eigenvectors and Eigenvalues

Let A be a square matrix of order n. A nonzero vector v ∈ Cn is called an
eigenvector of A if there exists a scalar λ ∈ C such that

Av = Λv.

The scalar λ is then called an eigenvalue of A, or, more specifically, the eigen-
value associated with the eigenvector v.

Note that, for every nonzero complex scalar c ∈ C, cv is an eigenvector as
well:

A(cv) = cAv = cλv = λ(cv).

In particular, thanks to the assumption that v is a nonzero vector, we have
‖v‖ > 0 so we can choose c = 1/‖v‖:

A(v/‖v‖) = λ(v/‖v‖).

This way, we obtain the (normalized) unit eigenvector v/‖v‖, namely, the
eigenvector of norm 1 that is proportional to the original eigenvector v.

9.19 Eigenvalues of a Hermitian Matrix

Assume also that A is Hermitian. Then, we have

λ(v, v) = (v, λv) = (v,Av) = (Av, v) = (λv, v) = λ̄(v, v).

Because v is a nonzero vector, we must also have
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(v, v) > 0.

Therefore, we must also have
λ = λ̄,

or
λ ∈ R.

The conclusion is, thus, that the eigenvalues of a Hermitian matrix must be
real.

9.20 Eigenvectors of a Hermitian Matrix

Let u and v be two eigenvectors of the Hermitian matrix A:

Au = µu and Av = λv,

where µ and λ are two distinct eigenvalues of A. We then have

µ(u, v) = µ̄(u, v) = (µu, v) = (Au, v) = (u, Av) = (u, λv) = λ(u, v).

Because we have assumed that µ 6= λ, we can conclude that

(u, v) = 0,

or that u and v are orthogonal to each other. Furthermore, we can normalize
u and v to obtain the two orthonormal eigenvectors u/‖u‖ and v/‖v‖.

9.21 The Sine Transform

A diagonal matrix is a square matrix of order n whose all off-diagonal
elements vanish:

Λ ≡


λ1

λ2

. . .
λn

 ,

where the blank spaces in the matrix stand for zero elements. This matrix is
also denoted by

Λ = diag(λ1, λ2, . . . , λn) = diag(λi)n
i=1.
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A tridiagonal matrix is a square matrix of order n that has nonzero elements
only in its main diagonal or in the two diagonals that lie immediately above
and below it. For example,

T ≡


2 −1
−1 2 −1

. . . . . . . . .
−1 2 −1
−1 2


is a tridiagonal matrix with 2’s on its main diagonal, −1’s on the diagonals
immediately below and above it, and 0’s elsewhere. This matrix is also denoted
by

T = tridiag(−1, 2,−1).

Let us find the eigenvectors and eigenvalues of T . In fact, for 1 ≤ j ≤ n,
the eigenvectors are the column vectors v(j) whose components are

v
(j)
i =

√
2
n

sin(ijπ/(n + 1)),

for 1 ≤ i ≤ n. From this definition, it follows that v(j) is indeed an eigenvector
of T :

Tv(j) = λjv
(j),

where
λj = 2− 2 cos(jπ/(n + 1)) = 4 sin2(jπ/(2(n + 1))).

Thanks to the fact that T is a symmetric matrix with n distinct eigenvalues,
we have that its eigenvectors are orthogonal to each other. Furthermore, the
eigenvectors v(j) are also unit vectors whose norm is equal to 1. Thus, the
matrix A formed by these column vectors

A ≡
(
v(1) | v(2) | · · · | v(n)

)
is an orthogonal matrix:

A−1 = At.

Furthermore, A is symmetric, so

A−1 = At = A.

The matrix A is called the sine transform. Thanks to the above properties
of A and its definition, one can write compactly

TA = AΛ,

or
T = AΛA−1 = AΛAt = AΛA.

This is called the diagonal form, or the diagonalization, of T in terms of its
eigenvectors.
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9.22 The Cosine Transform

Assume now that the corner elements in the tridiagonal matrix T defined
above are changed to read

T1,1 = Tn,n = 1

instead of 2. Although this T is still symmetric, its eigenvectors are different
from before. In fact, the ith component in the column eigenvector v(j) is now

v
(j)
i = cos((i− 1/2)(j − 1)π/n),

for 1 ≤ i, j ≤ n. Furthermore, the eigenvalue of T associated with this v(j) is
now

λj = 2− 2 cos((j − 1)π/n) = 4 sin2((j − 1)π/(2n)).

As before, thanks to the fact that T is a symmetric matrix with n dis-
tinct eigenvalues, the matrix A composed from the normalized column vectors
v(j)/‖v(j)‖ is orthogonal:

A−1 = At.

Thus, the matrix A, known as the cosine transform, can be used to obtain the
diagonal form of T :

T = AΛA−1 = AΛAt.

9.23 Determinant of a Square Matrix

Let A be a square matrix of order n > 1. For each 1 ≤ i, j ≤ n, the (i, j)th
minor of A is the (n − 1) × (n − 1) matrix obtained from A by dropping its
ith row and jth column. In the sequel, we denote the (i, j)th minor by A(i,j).

The above definition is useful in defining the determinant of a square matrix
A. In fact, the determinant of a square matrix is a function det : Rn2 → R
defined by induction on n ≥ 1 as follows:

det(A) ≡
{

a1,1 if n = 1∑n
j=1(−1)j+1A1,j det(A(1,j)) if n > 1.

This definition is indeed inductive: for n = 1, the determinant of A, denoted
by det(A), is the same as the only element in A, a1,1. For n > 1, on the
other hand, the determinant of A is defined in terms of the determinant of its
minors, which are matrices of the smaller order n− 1.

The determinant of the square matrix A is useful in calculating its inverse
matrix, A−1.
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9.24 Inverse of a Square Matrix

The inverse of a square matrix A of order n is a square matrix, denoted by
A−1, satisfying

A−1A = AA−1 = I,

where I is the identity matrix of order n. If the inverse matrix indeed exists,
then we say that A is nonsingular. In this case, det(A) 6= 0, and A−1 is
unique. If, on the other hand, no such matrix A−1 exists, then we say that A
is singular. In this case, det(A) = 0.

Kremer’s formula for calculating A−1 for a nonsingular matrix A is as fol-
lows:

(A−1)i,j = (−1)i+j det(A(j,i))
det(A)

.

9.25 Vector Product

The determinant function defined above is also useful in defining the vector
product of two vectors in the three-dimensional Cartesian space.

Let us define the three standard unit vectors in the 3-d Cartesian space:

i = (1, 0, 0)
j = (0, 1, 0)
k = (0, 0, 1).

These standard unit vectors are now used to define the vector product,
which is actually a function from R3 × R3 → R3. Let

u = (u1, u2, u3)
v = (v1, v2, v3)

be two vectors in the 3-d Cartesian space. The vector product of u and v is
the vector defined as follows:

u× v ≡ det

 i j k
u1 u2 u3

v1 v2 v3


= i(u2v3 − u3v2)− j(u1v3 − u3v1) + k(u1v2 − u2v1).
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9.26 Exercises

1. Let A be the 2× 2 matrix

A =
(

cos(θ) − sin(θ)
sin(θ) cos(θ)

)
for some 0 ≤ θ < 2π. Show that the columns of A are orthonormal.

2. Conclude that A is orthogonal.
3. Verify that A indeed satisfies

AtA = AAt = I

(where I is the 2× 2 identity matrix).
4. Let A be the n× n matrix of powers

A = tridiag(−1, 2,−1) + B,

where B is the n× n matrix with the only nonzero elements

b0,n−1 = bn−1,0 = −1

(the other elements of B vanish). In other words, the elements in A are

ai,j =

 2 if i = j
−1 if i− j = ±1 mod n
0 otherwise.

Let W be the n× n matrix of powers

W = (n−1/2wij)0≤i,j<n,

where
w = cos(2π/n) + i sin(2π/n).

Show that the jth column of W (0 ≤ j < n) is an eigenvector of A, with
the corresponding eigenvalue

λj = 2− (wj + w−j) = 2− 2 cos(j · 2π/n) = 4 sin2(jπ/n).

5. Use the symmetry of A to conclude that the columns of W are orthogonal
to each other.

6. Show that the columns of W are orthonormal.
7. Conclude that W is orthogonal. (W is known as the discrete Fourier trans-

form.)
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8. Verify that W indeed satisfies

WW̄ t = WW̄ = I

and
W̄ tW = W̄W = I,

where I is the n× n identity matrix.
9. Conclude that

WAW̄ = Λ, A = WΛW̄ ,

where Λ is the n× n diagonal matrix

Λ = diag(λ0, λ1, . . . , λn−1).

10. Let K ≡ (ki,j)0≤i,j<n be the n × n matrix with 1’s on the secondary
diagonal and 0 elsewhere:

ki,j =
{

1 if i + j = n− 1
0 otherwise.

Show that K is both symmetric and orthogonal. Conclude that

K2 = KtK = I.

11. Show that
W̄ = WK.

Conclude that
A = WΛWK.
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Chapter 10

Multilevel Objects

The concept of multilevel is useful not only in constructing composite math-
ematical objects but also in developing a systematic way of thinking towards
solving problems and forming scientific theories. In fact, multilevel is a funda-
mental philosophical tool not only in mathematics but also in human culture
in general.

Consider, for example, the problem of having suitable units to measure
quantities such as weight, distance, time, etc. You could ask your grocer to
have 1700 grams of apples, and he/she would no doubt reply that the cost is
400 cents; it would, however, make more sense to ask 1.7 kilogram and pay 4
dollars for it. By grouping 1000 grams into one kilogram and 100 cents into
one dollar, we turn from the too fine level of grams and cents into the coarser,
and more suitable, level of kilograms and dollars.

Returning to mathematics, we introduce here the concept of multilevel,
and use it to construct multilevel objects. These objects not only stem from
the philosophy of multilevel but also contribute back to it to enrich it and
enlighten new ways of thinking.

10.1 Induction and Deduction

The fundamentals of logical and analytical thinking, introduced by the an-
cient Greeks, are based on induction and deduction. Assume that you are
given a concrete engineering problem: say, to build a road between two par-
ticular cities. For this purpose, you are given the precise information about
your resources, the topography of the area, etc.

You could think hard and find an efficient way to solve your particular prob-
lem. This way, however, you may be misled by the specifics in your problem,
and driven away from the optimal solution.

A better approach is based on induction: generalize your particular problem
into a more general problem by introducing the required concepts and giving
them appropriate names. Writing the problem in general terms may clarify
the subject and lead to general theory that may provide the optimal solution.
Furthermore, this approach may develop a new useful and general terminology,
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which by itself may contribute to a better understanding of the fundamentals
and concepts behind the problem.

Now, deduce from the general solution the required solution for your partic-
ular problem by replacing the general characteristics by the particular char-
acteristics of the original application.

�
�

�
�	�

�
�

��

?

6@
@

@
@R@

@
@

@I

general problem
general terminology

general concepts
general theory

optimal solution

particular problem
concrete data

particular problem
concrete data

particular problem
concrete data

FIGURE 10.1: The tree of problems: the concrete problems in the fine (low)
level are solved by climbing up the tree to form the general problem (induction),
solving it optimally by introducing general concepts, terminology, and theory, and

then going back to the original problem (deduction).

This way of thinking may be viewed as a two-level approach. The particular
applications are placed in the fine level (Figure 10.1). The first stage, the
induction, forms the general problem in the higher level. Once an optimal
solution is found in this level, one may return to the original fine level in the
deduction stage, and adopt the optimal solution in the original application.

This two-level structure may also be interpreted in mathematical terms.
Indeed, it can be viewed as a tree, with its head at the high level, in which
the general problem is placed, and its leaves at the fine (low) level, in which
the particular applications are placed (Figure 10.1).

Furthermore, the induction-deduction process of climbing up and down the
tree may be viewed as a V-cycle (Figure 10.2). This cycle is called the V-
cycle because it contains two legs, as in the Latin letter ’V’. In the first
(left) leg of the V-cycle, the induction leg, one goes down from the particular
problem to the general problem, which is written in general terms, hence is
clearer and easier to solve optimally by introducing the required mathematical
concepts, terminology, and theory. Once this is done, one may climb up the
second (right) leg in the V-cycle, the deduction leg, to return to the original
application and use the optimal solution in it (Figure 10.2).
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general problem
general concepts

general terminology
general theory

optimal solution

particular problem
concrete data

in the particular problem
adopting the optimal solution

induction deduction

FIGURE 10.2: The V-cycle: the concrete problem is solved by forming the
general problem (induction) in the left leg of the ’V’, solving it optimally by

introducing general concepts, terminology, and theory, and then going back to the
original problem (deduction) in the right leg of the ’V’.

10.2 Mathematical Induction

In the induction process described above, the original concrete problem,
which is often obscured by too many details, is rewritten in a general form
using general terminology, so its fundamentals become clearer. This gives one
the opportunity to develop the required theory and solve the general problem
optimally. The general solution is then used also in the original problem: this
is the deduction stage.

This induction-deduction process is not limited to mathematics: it is rele-
vant to other fields as well. Mathematical induction, on the other hand, is a
special kind of induction, which is relevant for enumerable sets only. In fact,
in mathematical induction, a property that is well known for a finite number
of elements in the enumerable set is generalized to the entire set. Then, in the
deduction stage, one may use this property in each particular element in the
set.

Furthermore, mathematical induction can be used not only to establish that
each and every element in the enumerable set enjoys some property, but also
to create the infinitely many elements in the set in the first place. This is how
the natural numbers are created in the beginning of the book.

To start the mathematical induction, one must know that the first object
exists (e.g., the first number 1), or that the property holds for it. Then, one
assumes that the induction hypothesis holds, that is, that the (n−1)st element
in the set exists (e.g., the natural number n− 1), or that the property holds
for it. If one can use the induction hypothesis to prove the induction step, that
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is, that the nth element exists (e.g., n = (n − 1) + 1), or that the property
holds for it, then the mathematical-induction axiom implies that the entire
enumerable set of elements exists (e.g., N, the set of the natural numbers), or
that the property applies to each and every element in it.

?

?

?

known

induction hypothesis
induction step

1

2

3

...

n− 1

n

FIGURE 10.3: Mathematical induction as a multilevel process. In the first
level at the top, it is known that the property holds for 1. For n = 2, 3, 4, . . ., the
induction hypothesis assumes that the property holds for n− 1. In the induction
step, the induction hypothesis is used to prove that the property holds for n as
well. Thus, one may “climb” level by level from 1 down to any arbitrarily large

number, and show that the property holds for it as well.

The nth element in the set can be viewed as the nth level in the multilevel
hierarchy formed by the induction steps (Figure 10.3). The induction hypoth-
esis may then be interpreted to say that the (n− 1)st level exists, or that the
property holds for it. The induction step may be interpreted to say that it is
possible to “climb” in the multilevel hierarchy, that is, to construct the nth
level from the (n−1)st level, or to prove that the property holds for it as well.
Since it has been assumed that the first level at the top exists (or that the
property holds for it) the induction step actually means that infinitely many
levels exist (or that the property holds for them as well); indeed, one can start
at the first level and climb downwards an arbitrarily large number of steps in
the multilevel hierarchy.

The original purpose of mathematical induction is to create the natural
numbers. However, it is also useful to construct many other mathematical
objects and discover their properties, as is illustrated below.
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10.3 Trees

An important object defined by mathematical induction is the tree. In Fig-
ure 10.1 above, we have already seen a two-level tree; here we extend it into
a multilevel tree.

The definition of the multilevel tree is done by mathematical induction.
Let a one-level tree be the trivial tree that contains one node only: its head.
Assume that the induction hypothesis holds, that is, that, for n = 2, 3, 4, . . .,
we already know how to define a k-level tree for every k between 1 and n− 1.
Then, an n-level tree is obtained by letting a node serve as the head of the
tree, issuing some edges (branches) from this head, and placing at the end of
each branch a k-level tree (1 ≤ k ≤ n− 1). For example, the two-level tree in
Figure 10.1 is a special case deduced from this inductive definition: indeed, it
is obtained by using n = 2, issuing three branches from the head, and placing
a one-level tree (or just a node) at the end of each branch.

level 1

level 2

level 3

�
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�
�	

�
�

�
�� ?

A
A
A
AU

?

@
@

@
@R

A
A
A
AU

FIGURE 10.4: A three-level tree: three branches are issued from the node at
the top (the head). The middle branch ends with a trivial one-level tree or a leaf.
The right and left branches, on the other hand, end with two-level trees with one

to three branches.

In Figure 10.4, we illustrate a three-level tree that can also be deduced from
the above inductive definition by using n = 3, issuing three branches from it,
and placing a one-level tree (or a node, or a leaf) at the end of the middle
branch, and two-level trees at the end of the left and right branches.
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10.4 Binary Trees

In the above definition of a tree, there is no bound on the number of branches
issued from the head: it may be arbitrarily large. This produces a general tree;
here, however, we modify the above definition to obtain a binary tree.
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FIGURE 10.5: A four-level binary tree: the arrows represent branches, the
circles at the lowest level stand for leaves, and the bullets stand for nodes that are

not leaves.

The definition of a binary tree is similar to the above definition of the
general tree, except for the following additional constraint imposed in the
induction step: the number of branches issued from the head must be either
zero or two. It is easy to prove (by mathematical induction) that this implies
that this constraint applies not only to the head but also to every node in the
tree: the number of branches issued from it (not including the branch leading
to it) is either zero (for the leaves at the bottom of the tree) or two (for nodes
that are not leaves). Figure 10.5 illustrates this property in a four-level tree.

10.5 Arithmetic Expressions

The trees defined above are particularly useful to model arithmetic expres-
sions. The symbol of the arithmetic operation of the least priority (usually
the last + or − in the arithmetic expression) is placed at the head of the tree.
Then, the arithmetic expression to the left of this symbol is placed in the
subtree at the end of the left branch issued from the head, and the arithmetic
expression to the right of this symbol is placed in the subtree at the end of
the right branch issued from the head.
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The value of the arithmetic expression can be calculated bottom to top
inductively: assuming that the subexpressions in the subtrees have already
been calculated recursively, the value of the original arithmetic expression is
calculated by applying the symbol in its head to the values of these subex-
pressions.
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A
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7

2 ·
�

�
��� ?

4 3
FIGURE 10.6: Modeling the arithmetic expression 2 + 4 · 3− 7 in a four-level

binary tree. The calculation is carried out bottom to top: the top-priority
arithmetic operation, 4 · 3, is carried out in the third level. The next operation,
2 + 4 · 3, is carried out in the second level. Finally, the least-priority operation,

2 + 4 · 3− 7, is carried out at the top of the tree.

For example, the arithmetic expression

2 + 4 · 3− 7

is modeled by the four-level binary tree in Figure 10.6: the subtraction symbol
’−’, which is of least priority, is placed at the top of the tree, to be applied
last; the addition symbol ’+’, which is of intermediate priority, is placed in
the second level in the tree; and the multiplication symbol ’·’, which is of top
priority, is placed in the third level, so it is performed first on its arguments
in the leaves at the bottom of the tree.

10.6 Boolean Expressions

Boolean expressions are obtained from Boolean variables (variables that
may have only two possible values: 1 for true or 0 for false) by applying to
them the ”and” operation (denoted by the symbol ’∧’) or the ”or” operation
(denoted by the symbol ’∨’). Like arithmetic expressions, these expressions
can be modeled in trees. The symbol of the least priority (the last ’∨’ in the
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expression) is placed at the top of the tree, to be applied last; the arguments
of this symbol, the left subexpression and the right subexpression, are placed
in the left and right subtrees, respectively.
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FIGURE 10.7: Modeling the Boolean expression a ∨ b ∧ c ∨ d in a four-level
binary tree. The calculation is carried out bottom to top: the top-priority Boolean
operation, b ∧ c, is carried out in the third level. The next operation, a ∨ b ∧ c, is

carried out in the second level. Finally, the least-priority operation, a ∨ b ∧ c ∨ d, is
carried out at the top of the tree.

As in arithmetic expressions, calculating the value of the expression (0 or 1)
is done bottom to top by mathematical induction: assuming that the values
of the left and right subexpressions have already been calculated recursively,
the symbol at the head of the tree is applied to them to yield the value of the
entire expression. For example, the value of the Boolean expression

a ∨ b ∧ c ∨ d

(which means “either a is true or both b and c are true or d is true,” where a,
b, c, and d are some Boolean variables), is calculated as follows (Figure 10.7):
first, the top priority symbol ’∧’ at the third level is applied to its argument
in the leaves to calculate b ∧ c; then, the ’∨’ in the second level is applied to
calculate a ∨ b ∧ c; and finally, the ’∨’ at the top of the tree, the symbol of
least priority, is applied to calculate the original expression a ∨ b ∧ c ∨ d.

We say that a tree is full if it contains leaves in its lowest level only. For
example, the tree in Figure 10.5 is full, because its leaves lie in its fourth level
only. The trees in Figures 10.6–10.7, on the other hand, are not full, because
they contain leaves not only in the fourth level but also in the third level (the
left node) and the second level (the right node).
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10.7 The Tower Problem

The binary tree defined above is useful to model not only mathematical
expressions but also more abstract notions such as mathematical problems
and algorithms. Consider, for example, the following problem, known as the
tower problem. Suppose that three columns are given, denoted by column 1,
column 2, and column 3. A tower of n rings, one on top of the other, is placed
on column 1, where n is some (large) natural number. The radius of the rings
decreases from bottom to top: the largest ring lies at the bottom of column
1, a smaller ring lies on top of it, a yet smaller ring lies on top of it, and so
on, until the smallest (nth) ring at the top of column 1.

The task is to use the minimal possible number of moves to transfer the en-
tire tower of n rings from column 1 to column 3, while preserving the following
rules:

1. In each move, only one ring is moved from one column to another column.
2. A ring that another ring lies on top of it cannot be moved.
3. A ring cannot lie on a smaller ring.

The solution of this problem is found by mathematical induction. Indeed,
for n = 1, the tower contains only one ring, so it can be moved to column 3,
and the problem is solved in one move only. Now, assume that the induction
hypothesis holds, that is, that we know how to transfer a slightly smaller tower
of n− 1 rings from one column to another, while preserving the original order
from the largest ring at the bottom to the smallest ring at the top. Let us use
this hypothesis to transfer also the original tower of n rings from column 1 to
column 3, while preserving this order (the induction step). For this, we first
use the induction hypothesis to transfer the n− 1 top rings from column 1 to
column 2 (while preserving the original order). The only ring left on column
1 is the largest ring. In the next move, this ring is moved to column 3. Then,
we use the induction hypothesis once again to move the remaining n−1 rings
from column 2 to column 3 (while preserving their original order), and placing
them on top of the largest ring. This indeed completes the task and the proof
of the induction step.

Let us prove by mathematical induction that the total number of moves
used in the above algorithm is 2n− 1. Indeed, for n = 1, the number of moves
is

21 − 1 = 1.

Assume that the induction hypothesis holds, that is, that for n−1, the required
number of moves is

2n−1 − 1.

Since transferring n rings requires two transfers of n−1 rings plus one move of
the largest ring, we have that the total number of moves required to transfer
n rings is
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2(2n−1 − 1) + 1 = 2n − 1,

as indeed asserted. This completes the proof of the induction step.

10.8 The Tree of the Tower Problem

The above algorithm to solve the tower problem can be modeled as a full
n-level binary tree, where n is the number of rings in the tower. This can be
proved by mathematical induction of n. Indeed, the move of the largest ring
from column 1 to column 3 is placed in the head of the tree. Furthermore,
when n > 1, the original algorithm to transfer the entire tower of n rings
requires two applications (or recursive calls) of the same algorithm itself to
transfer two slightly smaller towers of n−1 rings from column to column. From
the induction hypothesis, these recursive calls can themselves be modeled by
full (n− 1)-level binary trees, which can be placed at the end of the left and
right branches issued from the head to serve as the left and right subtrees.
This completes the construction of the full n-level binary tree associated with
the original algorithm to transfer the entire tower of n rings.

In each of these recursive calls made in the original algorithm, two other
recursive calls are made to transfer two yet smaller towers of n− 2 rings from
one column to another. The full (n − 2)-level binary trees associated with
these recursive calls are placed in the next (lower) level in the tree to serve as
subtrees, and so on. Figure 10.8 illustrates the case n = 4.
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A
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2 → 3
�

�
���
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�
��� ?

3 → 2
�

�
��� ?

2 → 1
A
A
AAU?

1 → 3
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A
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1 → 22 → 33 → 11 → 2 2 → 33 → 11 → 22 → 3
FIGURE 10.8: The four-level binary tree with the moves required to transfer

a tower of four rings from column 1 to column 3. The algorithm is carried out
bottom-left to top. Each node contains a particular move. For example, the first

move in the lower-left node moves the top ring in column 1 to the top of column 2.

Note that each node in the above binary tree represents one move of one
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ring. For example, the trivial tower of one ring is represented by a one-level
tree, whose only node stands for the move of the ring from column 1 to column
3. Furthermore, for a tower of two rings, a large ring and a small ring, the
above algorithm is modeled by a two-level binary tree of three nodes: the
lower-left node stands for moving the small ring from column 1 to column 2,
the top node stands for moving the large ring from column 1 to column 3,
and the lower-right node stands for moving the small ring from column 2 to
column 3, which completes the task.

For larger n, the equivalence between the nodes in the tree and the moves in
the algorithm can be proved by mathematical induction. Indeed, assume that
this equivalence holds for n− 1. Then, for n, the corresponding tree contains
n levels. In particular, the second level contains two heads of two subtrees of
n − 1 levels each. From the induction hypothesis, each node in each of these
subtrees represents one move of one ring in the transfer of the subtowers of
n− 1 rings. Furthermore, the top node in the original tree represents moving
the largest (nth) ring from column 1 to column 3. Thus, each node in the
original tree stands for one move in the original algorithm to transfer the
original tower of n rings. This completes the proof of the induction step.

From the representation of the algorithm as a tree, we have another method
to calculate the total number of moves used in it. Indeed, this number must
be the same as the number of the nodes in the n-level binary tree, which is

n∑
i=1

2i−1 =
n−1∑
i=0

2i =
2n − 1
2− 1

= 2n − 1,

which indeed agrees with the number of moves as calculated inductively be-
fore.

10.9 Pascal’s Triangle

In the binary tree studied above, the number of nodes is doubled when turn-
ing from a particular level to the next level below it. Here we consider another
kind of a multilevel object, in which the number of entries only increases by
1 from some level to the next lower level.

Pascal’s triangle (Figure 10.9) consists of lines of oblique subsquares that
contain numbers (entries). These lines (or levels) are numbered by the indices
0, 1, 2, 3, . . .. For example, the 0th level at the top of the triangle contains one
entry only, the next level just below it contains two entries, the next level just
below it contains three entries, and so on.

The numbers (or entries) that are placed in the subsquares in Pascal’s
triangle are defined by mathematical induction level by level. In particular,
the number 1 is placed in the 0th level at the top of the triangle. Assume now
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FIGURE 10.9: Pascal’s triangle: each entry is equal to the sum of the two
entries in the upper-left and upper-right subsquares (if exist).

that n entries have already been placed in the n subsquares in the (n − 1)st
level (the induction hypothesis). Let us use these entries to define also the
entries in the nth level (the induction step).

This is done as follows: in each subsquare in the nth level, one places the
sum of the two entries in the upper-left and upper-right subsquares that lie
just above it. Of course, if one of these subsquares is missing, then this sum
reduces to the value in the existing subsquare only. This way, the entry in the
first subsquare in the nth level is the same as the entry in the first subsquare
in the (n−1)st level, and the entry in the last subsquare in the nth level is the
same as the entry in the last subsquare in the (n− 1)st level. (In other words,
all the entries at the edges of the triangle are equal to 1.) This completes the
induction step to define the entries in the subsquares in Pascal’s triangle.

The above mathematical induction gives an algorithm to define the entries
in Pascal’s triangle recursively level by level. However, it gives no explicit
formula for these entries. Below we provide such an explicit formula in terms
of the binomial coefficients.

© 2009 by Taylor and Francis Group, LLC



10.10. THE BINOMIAL COEFFICIENTS 165

10.10 The Binomial Coefficients

For two nonnegative integer numbers n ≥ k ≥ 0, the binomial coefficient
(
n

k) is defined by (
n
k

)
≡ n!

k!(n− k)!
,

where, for every nonnegative integer number n ≥ 0, the factorial function,
denoted by ’!’, is defined recursively by

n! ≡
{

1 if n = 0
(n− 1)! · n if n > 0.

Like the entries in Pascal’s triangle, the binomial coefficient (
n

k) also enjoys
the property that it can be written as the sum of two (n − 1)’level binomial
coefficients: (

n
k

)
=
(

n− 1
k − 1

)
+
(

n− 1
k

)
for every n > 0 and every 0 < k < n. Indeed,(

n− 1
k − 1

)
+
(

n− 1
k

)
=

(n− 1)!
(k − 1)!(n− k)!

+
(n− 1)!

k!(n− k − 1)!

=
k

n
· n!
k!(n− k)!

+
n− k

n
· n!
k!(n− k)!

=
k + n− k

n
·
(

n
k

)
=
(

n
k

)
.

We can now use this formula to show that the entries in Pascal’s triangle are
the same as the binomial coefficients. More precisely, we’ll use mathematical
induction to show that the kth entry (0 ≤ k ≤ n) in the nth level in Pascal’s

triangle (n ≥ 0) is equal to the binomial coefficient (
n

k). Indeed, for n = 0,
the only entry at the top of Pascal’s triangle is 1, which is also equal to the
binomial coefficient for which n = k = 0:(

0
0

)
=

0!
0! · (0− 0)!

=
1

1 · 1
= 1.

Furthermore, assume that the induction hypothesis holds, that is, that the
kth entry in the (n− 1)st level in Pascal’s triangle (0 ≤ k < n) is equal to the

binomial coefficient (
n−1

k ). Then, this hypothesis can be used to prove that
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the kth entry in the nth level in Pascal’s triangle (0 ≤ k ≤ n) is also equal to

the binomial coefficient (
n

k).
Indeed, for k = 0, (

n
0

)
=

n!
0!(n− 0)!

=
n!

1 · n!
= 1,

exactly as in the first (0th) entry in the nth level in Pascal’s triangle.
Furthermore, for k = n,(

n
n

)
=

n!
n!(n− n)!

=
n!

n! · 1
= 1,

exactly as in the last (nth) entry in the nth level in Pascal’s triangle.
Finally, for 1 < k < n,(

n
k

)
=
(

n− 1
k − 1

)
+
(

n− 1
k

)
is, by the induction hypothesis, the sum of the two entries in the upper-left
and upper-right subsquares, which is, by definition, the kth entry in the nth
level in Pascal’s triangle. This completes the proof of the induction step for
every 0 ≤ k ≤ n, establishing the assertion that all the entries in Pascal’s
triangle are indeed equal to the corresponding binomial coefficients.

10.11 Paths in Pascal’s Triangle

The entry that lies in a particular subsquare in Pascal’s triangle can be
interpreted as the number of distinct paths that lead from the top of the
triangle to this particular subsquare, where a path is a sequence of consecutive
steps from some subsquare to the adjacent lower-left or lower-right subsquare
(Figure 10.10).

More precisely, a path from the top of the triangle to the kth subsquare in
the nth level of the triangle may be represented by an n-dimensional vector
whose components are either 0 or 1: 0 for a down-left step, and 1 for a down-
right step. We assert that the kth entry in the nth level in Pascal’s triangle is
the number of distinct paths leading to it. Clearly, such a path must contain
exactly n − k down-left steps and k down-right steps, so the n-dimensional
vector representing it must contain exactly n− k 0’s and k 1’s, so its squared
norm must be exactly k.

Thus, the number of distinct paths leading to the kth entry in the nth level
in Pascal’s triangle is the cardinality of the set of vectors{

p ∈ {0, 1}n | ‖p‖2 = k
}

.
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FIGURE 10.10: The path leading from the top subsquare in Pascal’s triangle
to the subsquare k = 2 in level n = 6. This path corresponds to the 6-dimensional
vector (0, 0, 1, 0, 0, 1), because it contains down-right moves in the third and sixth

steps only, and down-left moves elsewhere.

Thus, our assertion also means that the kth entry in the nth level in Pascal’s
triangle is equal to the cardinality of this set.

Let us prove this assertion by induction on the levels in Pascal’s triangle.
Indeed, for n = 0, there is only one path that leads from the top of the
triangle to itself: the trivial path that contains no steps at all (represented
by the empty vector or the empty set). Furthermore, let us assume that the
induction hypothesis holds, that is, that the entries in the subsquares in the
(n−1)st level are equal to the number of distinct paths leading to them. Now,
each path leading to the kth subsquare in the nth level (0 ≤ k ≤ n) must
pass either through the upper-left subsquare (the (k − 1)st subsquare in the
(n − 1)st level) or through the upper-right subsquare (the kth subsquare in
the (n− 1)st level). (If one of these subsquares lies outside the triangle, then
it of course doesn’t count.) Thus, the total number of distinct paths leading
to the kth subsquare in the nth level is the sum of the numbers of distinct
paths leading to the (k − 1)st and kth subsquares in the (n − 1)st level (if
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exist). By the induction hypothesis, this is just the sum of the (k − 1)st and
kth entries in the (n− 1)st level, which is, by definition, just the kth entry in
the nth level. This completes the proof of the induction step.

10.12 Paths and the Binomial Coefficients

In the above sections, we have proved that the binomial coefficient (
n

k) is
equal to the entry in the kth subsquare in the nth level in Pascal’s triangle,
which is equal to the number of distinct paths leading from the top of the
triangle to it, or to the number of distinct n-dimensional vectors with n − k
0 components and k 1 components:(

n
k

)
=
∣∣{p ∈ {0, 1}n | ‖p‖2 = k

}∣∣ .
Let us prove this equality more directly, without mathematical induction.

This is done by counting the vectors in the above set. To choose a particular
vector in this set, we must decide where to place the k components whose
value is 1 among the n components in the vector.

How many different ways are there to do this?
We have k components whose value is 1 to place in the vector. Let us start

with the first component whose value is 1. Clearly, there are n different ways
to place it in the vector: it can lie in the first, second, . . ., or nth coordinate
in the vector.

Let us now turn to the next component whose value is 1. It can be placed
in either of the n − 1 coordinates that are left in the vector. For example, if
the first 1 has been placed in the ith coordinate in the vector (1 ≤ i ≤ n),
then the second component of value 1 can be placed in either of the n − 1
components j that satisfy 1 ≤ j ≤ n and j 6= i.

It seems, therefore, that there are n(n−1) possibilities to place the two first
components of value 1 in the vector. Still, are all these possibilities genuinely
different from each other? After all, placing the first component of value 1 in
the ith coordinate and the second component of value 1 in the jth coordinate
is the same as placing the first component of value 1 in the jth coordinate and
the second component of value 1 in the ith coordinate. Indeed, both possibil-
ities yield the same vector, with the value 1 at the ith and jth coordinates
and 0 elsewhere. Thus, the total number of distinct vectors with exactly two
components of value 1 is n(n− 1)/2 rather than n(n− 1).

By repeating this process, one can easily see that there are n−2 possibilities
to place the third component of value 1 in the vector. Indeed, it can be placed
in every coordinate l that satisfies 1 ≤ l ≤ n, l 6= i, and l 6= j, where i and j are
the coordinates where the first two components of value 1 have been placed.
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This yields the vector with the value 1 at the ith, jth, and lth coordinates
and 0 elsewhere.

Still, there are three possible choices that lead to this vector: choosing the
first two components to be placed at the ith and jth coordinates and the third
component of value 1 at the lth coordinate, choosing the first two components
to be placed at the ith and lth coordinates and the third component of value
1 at the jth coordinate, and choosing the first two components to be placed
at the jth and lth coordinates and the third component of value 1 at the ith
coordinate. Thus, in order to count distinct vectors only, one should multiply
the number of distinct vectors with two components of value 1 not by n − 2
but rather by (n− 2)/3, yielding

n

1
· n− 1

2
· n− 2

3

as the total number of distinct vectors with exactly 3 components of value 1
and 0 elsewhere.

By repeating this process, one has that the number of distinct vectors with
k components of value 1 and n− k components of value 0 is

n

1
· n− 1

2
· n− 2

3
· · · · · n− k + 1

k
=

n!
(n− k)!k!

=
(

n
k

)
,

as indeed asserted.
Below we show how useful the paths and the binomial coefficients introduced

above can be in practical applications.

10.13 Newton’s Binomial

The paths studied above are particularly useful in Newton’s binomial [19],
which is the formula that allows one to open the parentheses in the expression

(a + b)n = (a + b)(a + b)(a + b) · · · (a + b) n times

(where n is some given nonnegative integer number and a and b are given
parameters), and rewrite it as a sum of products rather than the product of
the factors (a+b). In fact, when the parentheses in this expression are opened,
one gets the sum of products of the form akbn−k, where k (0 ≤ k ≤ n) is the
number of factors of the form (a + b) from which a is picked, and n− k is the
number of factors of the form (a + b) from which b is picked.

Now, how many distinct possible ways are there to pick a from k factors
of the form (a + b) and b from the remaining n − k factors? Since each such
way can be characterized by an n-dimensional vector of 0’s and 1’s, with 0
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standing for factors from which b is picked and 1 standing for factors from
which a is picked, the total number of such ways is∣∣{p ∈ {0, 1}n | ‖p‖2 = k

}∣∣ . =
(

n
k

)
.

Thus, when the parentheses in the original expression (a + b)n are opened,

the term akbn−k appears (
n

k) times, once for each possible way to pick k a’s
and n− k b’s from the n factors of the form (a + b) in (a + b)n. These terms
sum up to contribute (

n
k

)
akbn−k

to the sum of products obtained from the original expression (a + b)n when
the parentheses are opened. Since this can be done for each k between 0 and
n, opening the parentheses yields the formula

(a + b)n =
n∑

k=0

(
n
k

)
akbn−k.

This formula is known as Newton’s binomial. The coefficients (
n

k) (the bi-
nomial coefficients) can be obtained from the nth level in Pascal’s triangle.

10.14 Brownian Motion

Here we describe another application of the binomial coefficients and the
paths associated with them. This is the Brownian motion in Stochastics [18].

Consider a particle that lies on the real axis and moves on it step by step
either one unit to the right or one unit to the left. In the beginning, the
particle lies at the origin 0. In each step, it moves by 1 either to the right
(from l to l + 1) or to the left (from l to l − 1).

The process is nondeterministic: we don’t know for sure where the particle
goes in each step. Still we know that in each particular step, there is a prob-
ability a that the particle goes to the left and a probability b that it goes to
the right, where a and b are given positive parameters satisfying a + b = 1.

Where will the particle be after n steps? Of course, we cannot tell this for
sure. Nevertheless, we can calculate the probability that it would then be at
some point on the real axis.

In the first n steps, the particle must go k moves to the left and n−k moves
to the right, where k is some integer number between 0 and n. The k moves to
the left move the particle by a total amount of −k, whereas the n− k moves
to the right move it by a total amount of n− k. Thus, after these n steps are
complete, the particle will lie at the point n− 2k on the real axis.
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For a fixed k, 0 ≤ k ≤ n, what is the probability that the particle will
indeed be at the point n − 2k after n steps? Well, this of course depends on
the number of distinct possible ways to make k moves to the left and n − k
moves to the right during the first n steps. As we’ve seen above, this number
is the binomial coefficient (

n

k).
Furthermore, since the steps are independent of each other, the probability

that the particle makes a particular path of k moves to the left and n − k
moves to the right is akbn−k. Thus, the total probability that the particle
takes any path of k moves to the left and n− k moves to the right is(

n
k

)
akbn−k.

This is also the probability that the particle would lie at the point n− 2k on
the real axis after n steps.

So far, we’ve calculated the probability that the particle would make k
moves to the left and n− k moves to the right during the first n steps, where
k is a fixed number between 0 and n. In fact, the particle must make k moves
to the left and n − k moves to the right for some 0 ≤ k ≤ n. Thus, the
sum of the probabilities calculated above must be 1. This indeed follows from
Newton’s binomial:

n∑
k=0

(
n
k

)
akbn−k = (a + b)n = 1n = 1.

When a = b = 1/2, that is, when the probability that the particle moves
to the right is the same as the probability that it moves to the left, the above
process models diffusion along a one-dimensional axis, or Brownian motion.
In this case, the probabilities for the location of the particle after n = 5, 6,
and 7 steps are illustrated in Figures 10.11–10.13.

When, on the other hand, a < b, the above process models the diffusion
when a slight wind blows to the right. Finally, when a > b, the above process
models the diffusion when a slight wind blows to the left.

10.15 Counting Integer Vectors

Let us use the binomial coefficients to count the total number of k-
dimensional vectors with nonnegative integer components whose sum is at
most n. In other words, we are interested in the cardinality of the set{

(v1, v2, . . . , vk) ∈ (Z+)k |
k∑

i=1

vi ≤ n

}
,
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−5 −3 −1 1 3 5

5 4 3 2 1 0k =

n− 2k =

FIGURE 10.11: Brownian motion (a = b = 1/2), distribution diagram after
n = 5 steps: the columns in the diagram represent the probability of the particle to
reach the point n− 2k (0 ≤ k ≤ n) after n = 5 steps. (This requires n− k moves to

the right and k moves to the left.)

where k ≥ 1 and n ≥ 0 are given integers, and

Z+ ≡ N ∪ 0

is the set of nonnegative integers. In the following, we’ll show that the cardi-
nality of the above set is∣∣∣∣∣

{
(v1, v2, . . . , vk) ∈ (Z+)k |

k∑
i=1

vi ≤ n

}∣∣∣∣∣ =
(

n + k
k

)
.

The proof is by induction on k ≥ 1, in which the induction step is by itself
proved by an inner induction on n ≥ 0. Indeed, for k = 1, the above vectors
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−6 −4 −2 0 2 4 6

6 5 4 3 2 1 0k =

n− 2k =

FIGURE 10.12: Brownian motion (a = b = 1/2), distribution diagram after
n = 6 steps: the columns in the diagram represent the probability of the particle to
reach the point n− 2k (0 ≤ k ≤ n) after n = 6 steps. (This requires n− k moves to

the right and k moves to the left.)

are actually scalars. Clearly, for every n ≥ 0, the total number of integer
numbers between 0 and n is

n + 1 =
(

n + 1
1

)
,

as required, Furthermore, let us use the induction hypothesis to prove the
asserted formula for every k ≥ 2 as well. According to this hypothesis, the
above formula holds for k − 1. In other words, for every n ≥ 0, the total
number of vectors in (Z+)k−1 whose component sum is at most n is

© 2009 by Taylor and Francis Group, LLC



174 CHAPTER 10. MULTILEVEL OBJECTS

−7 −5 −3 −1 1 3 5 7

7 6 5 4 3 2 1 0k =

n− 2k =

FIGURE 10.13: Brownian motion (a = b = 1/2), distribution diagram after
n = 7 steps: the columns in the diagram represent the probability of the particle to
reach the point n− 2k (0 ≤ k ≤ n) after n = 7 steps. (This requires n− k moves to

the right and k moves to the left.)

(
n + k − 1

k − 1

)
.

Now, to prove the assertion for k as well, let us use an inner induction on
n ≥ 0. Clearly, for n = 0, the number of vectors in (Z+)k whose components
sum is no more than 0 is

1 =
(

0 + k
k

)
,

as required. Assume now that the assertion holds for n− 1, that is, that the
total number of vectors in (Z+)k whose component sum is at most n− 1 is
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n− 1 + k

k

)
.

Let us use this assumption to count the vectors in (Z+)k whose component
sum is at most n. These vectors can be of two possible kinds: those whose last
(kth) component vanishes, and those whose last component doesn’t vanish.
The number of vectors in the first subset is the same as the number of vectors
in the set considered in the induction hypothesis on k, namely,(

n + k − 1
k − 1

)
.

Furthermore, the number of vectors in the second subset can be calculated
as follows. Each vector in this subset can be obtained by adding 1 to the last
(kth) component in a unique corresponding vector from the set considered in
the induction hypothesis in the induction step on n. Therefore, the number of
vectors in the second subset is the same as the number of vectors in the set
considered in the induction hypothesis on n, namely,(

n− 1 + k
k

)
.

Thus, the required total number is just the sum of these two numbers:(
n + k − 1

k − 1

)
+
(

n− 1 + k
k

)
=

k

n + k

(
n + k

k

)
+

n

n + k

(
n + k

k

)
=
(

n + k
k

)
,

as asserted.
Note that the above induction step assumes that the assertion is true for

a smaller k (with n being the same) and for a smaller n (with k being the
same). In both cases, the sum n+k is smaller. Thus, the above nested induction
can actually be viewed as an induction on n + k = 1, 2, 3, . . .. This way, the
induction is carried out diagonal by diagonal in the number plane that contains
pairs of the form (n, k) with k ≥ 1 and n ≥ 0.

With this approach, there is actually a more natural proof for the above
result, which also uses a diagonal-by-diagonal induction rather than a nested
induction. In this proof, the initial conditions are the same as before: for
either n = 0 or k = 1, the assertion holds trivially as above. To show that the
assertion holds in the entire n-k plane as well, we must prove the induction
step on n+k ≥ 2. For this, we may assume that the induction hypothesis holds,
that is, that the assertion holds for the pairs (n− 1, k) and (n, k − 1), which
belong to the previous (lower) diagonal in the n-k plane. Moreover, let us use
the splitting of the original set of k-dimensional vectors whose component sum
is at most n as the union of two disjoint subsets: the subset of vectors whose
component sum is at most n− 1, and the subset of vectors whose component
sum is exactly n:
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(v1, v2, . . . , vk) ∈ (Z+)k |

k∑
i=1

vi ≤ n

}

=

{
(v1, v2, . . . , vk) ∈ (Z+)k |

k∑
i=1

vi ≤ n− 1

}

∪

{
(v1, v2, . . . , vk) ∈ (Z+)k |

k∑
i=1

vi = n

}
.

Thanks to the induction hypothesis, the number of vectors in the first subset
is (

n− 1 + k
k

)
.

Thus, all that is left to do is to count the vectors in the second subset. For
this, observe that each vector in it can be transformed uniquely into a (k−1)-
dimensional vector whose component sum is at most n by just dropping the
kth component. In fact, this transformation is reversible, because this kth
component can be added back in a unique way. As a result, we have∣∣∣∣∣

{
(v1, v2, . . . , vk) ∈ (Z+)k |

k∑
i=1

vi ≤ n

}∣∣∣∣∣
=

∣∣∣∣∣
{

(v1, v2, . . . , vk) ∈ (Z+)k |
k∑

i=1

vi ≤ n− 1

}∣∣∣∣∣
+

∣∣∣∣∣
{

(v1, v2, . . . , vk) ∈ (Z+)k |
k∑

i=1

vi = n

}∣∣∣∣∣
=

∣∣∣∣∣
{

(v1, v2, . . . , vk) ∈ (Z+)k |
k∑

i=1

vi ≤ n− 1

}∣∣∣∣∣
+

∣∣∣∣∣
{

(v1, v2, . . . , vk−1) ∈ (Z+)k−1 |
k−1∑
i=1

vi ≤ n

}∣∣∣∣∣
=
(

n− 1 + k
k

)
+
(

n + k − 1
k − 1

)
=
(

n + k
k

)
,

as required.
From this proof, we also have as a by-product the formula∣∣∣∣∣

{
(v1, v2, . . . , vk) ∈ (Z+)k |

k∑
i=1

vi = n

}∣∣∣∣∣ =
(

n + k − 1
k − 1

)
.

As a result, we also have
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n + k

k

)
=

∣∣∣∣∣
{

(v1, v2, . . . , vk) ∈ (Z+)k |
k∑

i=1

vi ≤ n

}∣∣∣∣∣
=

∣∣∣∣∣∪n
m=0

{
(v1, v2, . . . , vk) ∈ (Z+)k |

k∑
i=1

vi = m

}∣∣∣∣∣
=

n∑
m=0

∣∣∣∣∣
{

(v1, v2, . . . , vk) ∈ (Z+)k |
k∑

i=1

vi = m

}∣∣∣∣∣
=

n∑
m=0

(
m + k − 1

k − 1

)
.

10.16 Mathematical Induction in Newton’s Binomial

Newton’s binomial formula

(a + b)n =
n∑

k=0

(
n
k

)
akbn−k

can be proved most compactly by mathematical induction. Indeed, for n = 0,
we trivially have

(a + b)0 = 1 =
(

0
0

)
a0b0 =

0∑
k=0

(
0
k

)
akb0−k =

n∑
k=0

(
n
k

)
akbn−k,

as required. Furthermore, for n ≥ 1, let us assume that the induction hypoth-
esis holds, that is,

(a + b)n−1 =
n−1∑
k=0

(
n− 1

k

)
akbn−1−k.

Using this hypothesis, we have
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(a + b)n = (a + b)(a + b)n−1

= (a + b)
n−1∑
k=0

(
n− 1

k

)
akbn−1−k

= a
n−1∑
k=0

(
n− 1

k

)
akbn−1−k + b

n−1∑
k=0

(
n− 1

k

)
akbn−1−k

=
n−1∑
k=0

(
n− 1

k

)
ak+1bn−(k+1) +

n−1∑
k=0

(
n− 1

k

)
akbn−k

=
n∑

k=1

(
n− 1
k − 1

)
akbn−k +

n−1∑
k=0

(
n− 1

k

)
akbn−k

= an +
n−1∑
k=1

(
n− 1
k − 1

)
akbn−k +

n−1∑
k=1

(
n− 1

k

)
akbn−k + bn

= an +
n−1∑
k=1

((
n− 1
k − 1

)
+
(

n− 1
k

))
akbn−k + bn

= an +
n−1∑
k=1

(
n
k

)
akbn−k + bn

=
n∑

k=0

(
n
k

)
akbn−k,

as required.

10.17 Factorial of a Sum

The above method of proof can also be used to prove another interesting
formula. For this, however, we need some more notations.

For any number a and a nonnegative number n, define

Ca,n ≡ a(a− 1)(a− 2) · · · (a− (n− 1)) =
{

1 if n = 0
aCa−1,n−1 if n ≥ 1.

In particular, if a is a nonnegative integer number, then

Ca,n =
{ a!

(a−n)! if a ≥ n

0 ifa < n.

With this notation, let us prove the formula
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Ca+b,n =
n∑

k=0

(
n
k

)
Ca,kCb,n−k.

Indeed, the formula is clearly true for n = 0. Let us use mathematical induc-
tion to show that it is true for every n ≥ 1 as well. For this, let us assume the
induction hypothesis, that is,

Ca+b,n−1 =
n−1∑
k=0

(
n− 1

k

)
Ca,kCb,n−1−k.

Indeed, from this formula we have

Ca+b,n = (a + b)Ca+b−1,n−1

= aC(a−1)+b,n−1 + bCa+(b−1),n−1

= a
n−1∑
k=0

(
n− 1

k

)
Ca−1,kCb,n−1−k + b

n−1∑
k=0

(
n− 1

k

)
Ca,kCb−1,n−1−k

=
n−1∑
k=0

(
n− 1

k

)
Ca,k+1Cb,n−(k+1) +

n−1∑
k=0

(
n− 1

k

)
Ca,kCb,n−k

=
n∑

k=1

(
n− 1
k − 1

)
Ca,kCb,n−k +

n−1∑
k=0

(
n− 1

k

)
Ca,kCb,n−k

= Ca,n +
n−1∑
k=1

(
n− 1
k − 1

)
Ca,kCb,n−k +

n−1∑
k=1

(
n− 1

k

)
Ca,kCb,n−k + Cb,n

= Ca,n +
n−1∑
k=1

((
n− 1
k − 1

)
+
(

n− 1
k

))
Ca,kCb,n−k + Cb,n

= Ca,n +
n−1∑
k=1

(
n
k

)
Ca,kCb,n−k + Cb,n

=
n∑

k=0

(
n
k

)
Ca,kCb,n−k,

as required.
When both a and b are nonnegative integers satisfying a + b ≥ n, we have

the special case

(a + b)!
(a + b− n)!

=
min(a,n)∑

k=max(0,n−b)

(
n
k

)
a!

(a− k)!
· b!
(b− (n− k))!

.
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10.18 The Trinomial Formula

By applying the binomial formula twice, we obtain the following trinomial
formula:

(a + b + c)n = ((a + b) + c)n

=
n∑

k=0

(
n
k

)
(a + b)kcn−k

=
n∑

k=0

(
n
k

)( k∑
l=0

(
k
l

)
albk−l

)
cn−k

=
n∑

k=0

k∑
l=0

(
n
k

)(
k
l

)
albk−lcn−k

=
n∑

k=0

k∑
l=0

n!
k!(n− k)!

· k!
l!(k − l)!

albk−lcn−k

=
n∑

k=0

k∑
l=0

n!
l!(k − l)!(n− k)!

albk−lcn−k

=
∑

0≤l,j,m≤n, l+j+m=n

n!
l!j!m!

albjcm.

(In the last equality, we have substituted j for k − l and m for n− k.)
Similarly, by applying the formula in Section 10.17 twice, we have the fol-

lowing formula:
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Ca+b+c,n = C(a+b)+c,n

=
n∑

k=0

(
n
k

)
Ca+b,kCc,n−k

=
n∑

k=0

(
n
k

)( k∑
l=0

(
k
l

)
Ca,lCb,k−l

)
Cc,n−k

=
n∑

k=0

k∑
l=0

(
n
k

)(
k
l

)
Ca,lCb,k−lCc,n−k

=
n∑

k=0

k∑
l=0

n!
k!(n− k)!

· k!
l!(k − l)!

Ca,lCb,k−lCc,n−k

=
n∑

k=0

k∑
l=0

n!
l!(k − l)!(n− k)!

Ca,lCb,k−lCc,n−k

=
∑

0≤l,j,m≤n, l+j+m=n

n!
l!j!m!

Ca,lCb,jCc,m.

These formulas will be useful later on in the book.

10.19 Multiscale

The multilevel objects considered so far are composite objects defined in-
ductively level by level, with levels that contain more and more entries (or
scalars, or numbers). Furthermore, the principle of multilevel can be used not
only in composite objects but also in more elementary objects such as the
scalars themselves. In this context, however, a more suitable name for the
multilevel structure is multiscale.

The notion of multiscale is used in every kind of measuring. Indeed, small
units such as centimeters, grams, and seconds are suitable to measure small
quantities of distance, weight, and time, whereas large units such as meter,
kilogram, and hour are suitable to measure large quantities. An accurate mea-
sure must often combine (or sum up) the large units that measure the core of
the quantity (coarse-scale measuring) with the small units that measure the
remainder of the quantity (fine-scale measuring) to yield an accurate mea-
surement of the entire quantity.

For example, one may say that the distance between two points is 17.63
meters (17 meters plus 63 centimeters), the weight of some object is 8.130
kilograms (8 kilograms plus 130 grams), and the time span is 5 : 31 : 20
hours (5 hours, 31 minutes, and 20 seconds). In the first two examples, large-
scale units (meters and kilograms, respectively) are combined with small-scale
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units (centimeters and grams, respectively). In the third example, on the other
hand, large-scale units (hours), intermediate-scale units (minutes), and small-
scale units (second) are all combined to come up with an accurate multiscale
measurement of time.

10.20 The Decimal Representation

The decimal representation of natural numbers can also be viewed as a
multiscale representation. For example,

178 = 100 + 70 + 8 = 1 · 100 + 7 · 10 + 8 · 1

may actually be viewed as the combination (or sum) of large-scale, intermediate-
scale, and small-scale units: the largest (coarsest) unit is the hundreds (mul-
tiples of 100), the intermediate unit is the tens (multiples of 10), and the
smallest (finest) unit is the unit digit (multiples of 1).

The decimal representation of fractions uses yet finer and finer scales: mul-
tiples of 10−1, 10−2, 10−3, and so on, yielding better and better accuracy.

10.21 The Binary Representation

Similarly, the binary representation of a number can also be viewed as a
multiscale representation. Here, however, the powers of 10 used in the decimal
representation above are replaced with powers of 2. For example, the number
1101.01 in base 2 is interpreted as

1 · 23 + 1 · 22 + 0 · 21 + 1 · 20 + 0 · 2−1 + 1 · 2−2.

This representation combines (sums) six different scales, or powers of 2: from
23 (the largest or coarsest scale) to 2−2 (the smallest or finest scale). The
coefficients of these powers of 2 are the digits in the base-2 representation
1101.01.

10.22 The Sine Transform

In Chapter 9 (Section 9.21) above, we’ve introduced the Sine transform,
which is the n× n matrix
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A ≡
(
v(1) | v(2) | v(3) | · · · | v(n)

)
,

where, for 1 ≤ j ≤ n, the column vector v(j) is the n-dimensional vector

v(j) ≡
√

2
n


sin(jπ/(n + 1))
sin(2jπ/(n + 1))
sin(3jπ/(n + 1))

...
sin(njπ/(n + 1))

 .

The vector v(j) can be viewed as a sample of the function
√

2/n sin(jπx)
in the uniform grid consisting of the points

x = 1/(n + 1), 2/(n + 1), 3/(n + 1), . . . , n/(n + 1)

in the unit interval 0 < x < 1. The function
√

2/n sin(jπx) is rather smooth
for j = 1, and oscillates more and more frequently as j increases. This is why
the number j is called the wave number or the wave frequency.

We have also proved in Chapter 9, Section 9.21, that A is both symmetric
and orthogonal, so

AA = AtA = I

(the identity matrix of order n). Thus, every n-dimensional vector u can be
decomposed as a combination (sum) of the v(j)’s, with coefficients that are
the components of Au:

u = Iu = (AA)u = A(Au) =
n∑

j=1

(Au)jv
(j).

In other words, u is decomposed as the combination of uniform samples of
more and more oscillatory functions of the form sin(jπx), multiplied by the
corresponding coefficient

(Au)j

√
2/n

(the amplitude of the jth wave in the decomposition of u). In particular, the
smoothest part of u is the multiple of the first discrete wave

(Au)1v(1),

the next more oscillatory part is

(Au)2v(2),

and so on, until the most oscillatory part

(Au)nv(n).
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This decomposition of the original n-dimensional vector u can actually be
interpreted as a multiscale decomposition. In fact, the first discrete wave v(1)

can be viewed as the coarsest scale, in which the original vector u is approxi-
mated roughly. The second discrete wave, v(2), approximates the remainder

u− (Au)1v(1)

roughly, contributing a finer term to a better approximation of the original
vector u. The next discrete wave, v(3), approximates the remainder

u− (Au)1v(1) − (Au)2v(2)

roughly, providing a yet finer term to the yet better approximation for the
original vector u. This process continues until the nth discrete wave, v(n),
contributes the finest term to yield the exact decomposition of u in terms of
the finer and finer scales obtained from the more and more frequent waves
v(1), v(2), v(3), . . ., v(n).

10.23 Exercises

1. Use mathematical induction on n ≥ 0 to show that the number of nodes
in the nth level in a binary tree (n ≥ 0) is 2n. (Assume that the head of
the tree lies in the 0th level.)

2. Use mathematical induction on n ≥ 0 to show that the total number of
nodes in an n-level binary tree is 2n+1 − 1.

3. Define the set of n-dimensional binary vectors by

V ≡ V (n) ≡ {0, 1}{1,2,...,n}

= {(v1, v2, . . . , vn) | vi = 0 or vi = 1, 1 ≤ i ≤ n} .

Use mathematical induction on n ≥ 1 to show that the number of distinct
vectors in V is

|V | = 2n.

4. Let Vk ≡ Vk(n) be the subset of V that contains vectors with exactly k
nonzero components:

Vk ≡
{
v ∈ V | ‖v‖22 = k

}
.

Use mathematical induction on k = 0, 1, 2, . . . , n to show that the number
of distinct vectors in Vk is

|Vk| =
(

n
k

)
.
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5. Show that, for two different numbers k 6= l, Vk and Vl are disjoint sets of
vectors:

Vk ∩ Vl = Φ.

6. Show that V can be written as the union of disjoint sets

V = ∪n
k=0Vk.

7. Conclude (once again) that the number of distinct vectors in V is

|V | =
n∑

k=0

|Vk| =
n∑

k=0

(
n
k

)
= 2n.

8. Show that (
n
0

)
=
(

n
n

)
= 1.

9. Show that for any natural numbers n and k satisfying 0 < k < n,(
n
k

)
=
(

n− 1
k

)
+
(

n− 1
k − 1

)
.

10. Conclude that the number of paths leading from the head of Pascal’s
triangle (in its 0th level) to the kth entry in its nth level (0 ≤ k ≤ n) is
the Newton binomial (

n
k

)
.

11. Why is the total number of distinct paths in the previous exercise the
same as the total number of vectors in Vk above?

12. Define an invertible mapping that identifies each path leading from the
head of Pascal’s triangle to its nth level with a particular vector in Vk.

13. Show in a yet different way, this time using mathematical induction on n
rather than on k, that the number of distinct vectors in Vk is indeed

|Vk| =
(

n
k

)
.

14. Why is the total number of vectors in Vk the same as the total number of
possible choices to pick k a’s and n− k b’s to form a product of the form
akbn−k in Newton’s binomial formula to open the parentheses in (a+b)n?

15. Define an invertible mapping that identifies each particular choice of k a’s
and n− k b’s in the previous exercise with a particular vector in Vk.

16. Write the algorithm that computes an arbitrarily long arithmetic expres-
sion. The solution can be found in Chapter 14, Section 14.8.

17. Write the algorithm that transforms the decimal representation of a nat-
ural number to its binary representation. The solution can be found in
Chapter 14, Section 14.6.
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Chapter 11

Graphs

The tree object introduced above is defined recursively: a node is placed at
the top of the tree, and branches (edges) are issued from it. Then, a subtree
is placed at the end of each branch. These subtrees are defined recursively by
the same definition.

Here we introduce a more general object: the graph [13] [14] [34]. Unlike the
tree, the graph not necessarily has a recursive structure. In fact, the graph
consists of two sets: N , the set of the nodes used in the graph, and E, the set
of edges that connect nodes in the graph.

To show how graphs are handled, we consider the node-coloring problem.
In this problem, the nodes in the graph should be colored in such a way
that every two nodes that are connected by an edge have distinct colors. The
challenge is to complete this task using only a small number of colors.

Furthermore, we also consider the edge-coloring problem, in which the edges
in E should be colored in such a way that every two edges that share a node
have distinct colors.

Finally, we consider a special kind of graphs: triangulations or meshes of
triangles. In this case, we also consider the triangle-coloring problem, in which
the triangles should be colored in such a way that every two adjacent triangles
have distinct colors.

11.1 Oriented Graphs

A graph consists of two sets: N , the set of nodes used in the graph, and E,
the set of edges that may connect two nodes to each other. In the following,
we describe the nature of the nodes and the edges.

The nodes in N may have some geometrical interpretation. For example,
they may be 2-D points in the Cartesian plane (vectors in R2) or 3-D points
in the Cartesian space (vectors in R3). This interpretation, however, is com-
pletely immaterial in the present discussion. Indeed, here the nodes are consid-
ered as mere abstract elements in N that may be connected to each other by
edges in E. This abstract formulation allows one to deal with general graphs,
independent of any geometrical interpretation they may have.

187
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An edge in E may be viewed as an ordered pair (2-D vector) of nodes in
N . For example, if i and j are two nodes in N , then the edge that leads from
i to j may be denoted by the ordered pair (i, j).

Recall that the set of all such pairs is denoted by

N2 = N ×N = {(i, j) | i, j ∈ N} .

Thus, the set of edges is actually a subset of N2:

E ⊂ N2.

The order of the components i and j in the edge (i, j) ∈ E reflects the fact
that the edge leads from i to j rather than from j to i. This is why general
graphs are also called oriented graphs: each edge in E not only connects two
nodes in N to each other, but also does it in a specific order: it leads from the
node in its first component to the node in its second component. An oriented
graph is illustrated in Figure 11.1.

Below we also consider nonoriented graphs, in which the edges have no
direction. In other words, the edges can be viewed as unordered pairs rather
than ordered pairs of nodes.

�

6
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@I

��
�

�
��

6

FIGURE 11.1: An oriented graph.

11.2 Nonoriented Graphs

In the oriented graphs introduced above, the edges in E are ordered pairs
of the form (i, j), where i and j are some nodes in N . The fact that i comes
before j in (i, j) means that the edge (i, j) leads from i to j rather than from
j to i.

A nonoriented graph, on the other hand, consists of the following two sets:
N , the set of nodes, and E, the set of unordered pairs of the form {i, j},
where i and j are some nodes in N . In an edge of this form, there is no order:
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FIGURE 11.2: A nonoriented graph.

both of the nodes i and j have equal status in it. Thus, the edge neither leads
from i to j nor leads from j to i; it merely connects i and j to each other. A
nonoriented graph is illustrated in Figure 11.2.

The problems and algorithms described below are written in uniform terms,
so they apply to nonoriented as well as oriented graphs.

11.3 The Node-Coloring Problem

In the node-coloring problem, one has to color the nodes in N in such a
way that every two nodes that are connected by an edge in E are colored
by distinct colors. More precisely, a color can be viewed as a natural number
assigned to certain nodes in N . For example, if the graph is colored by C colors
(for some natural number C), then the number 1 is assigned to the nodes that
are colored by the first color, the number 2 is assigned to the nodes that are
colored by the second color, and so on, until the number C, which is assigned
to the remaining nodes in N that are still uncolored.

This coloring may be viewed as a function c : N → N, in which c(i) denotes
the index of the color by which the node i is colored, and

C ≡ max({c(i) | i ∈ N})

is the number of colors used in the coloring.
The challenge is to find a coloring with C as small as possible. Unfortu-

nately, finding the optimal coloring in this sense is too difficult. (In fact, the
coloring problem belongs to the class of the so-called NP-complete-problems,
which can probably be solved only in exponentially long time.)

Here we present an algorithm to obtain a rather good coloring, for which
the number of colors C is not too large.
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11.4 The Node-Coloring Algorithm

The node-coloring algorithm is defined by mathematical induction on |N |,
the number of nodes in N . Clearly, when |N | = 1, the graph contains only
one node, so the color assigned to it must be the first color, denoted by 1, so
the total number of colors is C = 1.

Let us now define the induction step. Let n ∈ N be some node in the graph.
Define the set of edges that use the node n by

edges(n) ≡ {(i, j) ∈ E | i = n or j = n} .

Furthermore, define the set of nodes that are connected to n by an edge by

neighbors(n) ≡ {i ∈ N | (i, n) ∈ E or (n, i) ∈ E} .

Moreover, for any set of nodes N ′ ⊂ N , define the set of colors used in it by

c(N ′) ≡ {c(i) | i ∈ N ′} .

In particular, c(neighbors(n)) contains the colors used in the nodes that are
connected to n by an edge, or the natural numbers assigned to them.

Now, to make the induction step, we consider the slightly smaller graph,
from which n and the edges issued from or directed to it are excluded. In
other words, this graph has the slightly smaller set of nodes N \ {n} and the
slightly smaller set of edges E \ edges(n). By the induction hypothesis, we
may assume that this smaller graph has already been colored. Thus, all that
is left to do is to color n as well, or to define c(n) properly.

This is done as follows. The remaining node n is colored by a color that has
not been used in any of the nodes that are connected to n by an edge:

c(n) ≡ min (N \ c(neighbors(n))) .

This completes the induction step. This completes the definition of the node-
coloring algorithm.

The above algorithm is illustrated in Figure 11.3. In this example, two colors
are sufficient to color all the nodes in the graph.

It is easy to prove (by mathematical induction) that the coloring produced
by the above algorithm indeed satisfies the requirement that every two nodes
that are connected by an edge are colored by distinct colors, or

(i, j) ∈ E ⇒ c(i) 6= c(j).

Nevertheless, the above coloring depends on the choice of the particular node
n ∈ N picked to perform the induction step. In other words, it depends on
the particular order in which the nodes in N are colored. To have the optimal
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12FIGURE 11.3: The node-coloring algorithm uses only two colors to color a
graph with six nodes.

coloring (the coloring with the minimal number of colors C) one needs to
repeat the above algorithm for every possible order of nodes in N and choose
the particular order that produces the optimal coloring. Because the total
number of possible orders is |N |!, this task is prohibitively time consuming.

Still, one may be rather happy with the coloring produced by the above
node-coloring algorithm, because it uses a moderate number of colors C. Below
we use a similar algorithm to color the edges in the graph.

11.5 The Edge-Coloring Problem

In the previous sections, we have discussed the problem of coloring the nodes
in N . Here we turn to the problem of coloring the edges in E, or assigning
a natural number c(e) to each and every edge e ∈ E in such a way that two
adjacent (node sharing) edges are colored by distinct colors:

c((i, j)) 6= c((k, l)) if i = k or j = l or i = l or j = k.

As before, the challenge is to find a coloring for which the total number of
colors, defined by

C ≡ max {c(e) | e ∈ E} ,

is as small as possible. Again, it is too difficult to find the optimal coloring
in this sense; still, the algorithm presented below produces an edge-coloring
with a moderate number of colors C.
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11.6 The Edge-Coloring Algorithm

Like the node-coloring algorithm, the edge-coloring algorithm is also defined
by mathematical induction on |N |, the number of nodes in N . Clearly, when
N contains only one node, E can contain at most one edge: the edge that
leads from this node to itself. Thus, the edge coloring requires one color only,
so C = 1.

Furthermore, to define the induction step, let us apply the induction hy-
pothesis to a slightly smaller graph. For this purpose, let us pick some node
n ∈ N . Now, consider the graph obtained from excluding the node n and the
edges that are issued from it or lead to it, namely, the graph whose set of
nodes is N \ {n} and whose set of edges is E \ edges(n). By the induction
hypothesis, one may assume that the edges in this smaller graph (namely, the
edges in E\edges(n)) have already been colored properly by the edge-coloring
algorithm. Thus, all that is left to do is to color properly also the edges in
edges(n).

This task is completed as follows.

1. Initially, assign to every edge e ∈ edges(n) the zero color:

c(e) ≡ 0

for every e ∈ edges(n).
2. Then, scan the edges in edges(n) one by one. For each edge e ∈ edges(n)

encountered, e must be either of the form e = (i, n) or of the form e = (n, i)
for some node i ∈ neighbors(n). Therefore, e is assigned its final color to
be a color that has not been used in any edge issued from or directed to
either n or i:

c(e)← min (N \ c(edges(n)) \ c(edges(i))) ,

where ’←’ stands for substitution,

c(edges(n)) ≡ {c(e) | e ∈ edges(n)},

and
c(edges(i)) ≡ {c(e) | e ∈ edges(i)}.

This way, the final color assigned to e is different from the colors assigned
previously to the edges that are issued from or lead to either of its endpoints
n or i. This completes the induction step. This completes the definition of the
edge-coloring algorithm.

It is easy to prove by mathematical induction on the number of nodes in N
[and, within it, by an inner mathematical induction on the number of edges
in edges(n)] that the coloring produced by the above edge-coloring algorithm
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indeed satisfies the requirement that every two adjacent (node sharing) edges
are indeed colored by different colors.

Like the node-coloring algorithm, the edge-coloring algorithm also depends
on the particular node n ∈ N picked in the induction step. In other words,
it depends on the order of nodes in N . Furthermore, it also depends on the
order in which the edges in edges(n) are scanned. Thus, there is no guarantee
that the algorithm would produce the optimal coloring that uses the minimal
number of colors C. Still, the above edge-coloring algorithm produces a fairly
good coloring with a rather small number of colors C. This is illustrated in
Figure 11.4, where three colors are used to color a graph with six edges.
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FIGURE 11.4: The edge-coloring algorithm uses only three colors to color a
graph with six edges. It is assumed that the nodes are ordered counter-clockwise in

the algorithm.

Below we show that the edge-coloring algorithm may actually be viewed as
a special case of the node-coloring algorithm applied to a new graph.

11.7 Graph of Edges

We say that two edges in E are adjacent to each other if they share the
same node as their joint endpoint. Let E′ be the set of unordered pairs of
adjacent edges:

E′ ≡
{
{(i, j), (k, l)}

∣∣∣∣ (i, j) ∈ E, (k, l) ∈ E, and
either i = k or j = l or i = l or j = k

}
.

This definition helps to form a new (nonoriented) graph, whose nodes are
the elements in E, and whose edges are the unordered pairs in E′. In other
words, each edge in the original graph serves as a node in the new graph, and
each two adjacent edges in the original graph are connected by an edge in the
new graph.
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Now, the edge-coloring problem in the original graph is equivalent to the
node-coloring problem in the new graph. Therefore, the node-coloring algo-
rithm could actually be applied to the new graph to provide an edge-coloring
algorithm for the original graph.

As a matter of fact, the edge-coloring algorithm described in the previous
section can also be viewed as a node-coloring algorithm in the new graph (the
graph of edges). To see this, note that the edges in the edge-coloring algorithm
are colored one by one in a particular order. This order can be defined by
mathematical induction on |N |: assuming that the induction hypothesis holds,
that is, that the order has already been defined on the edges in E \ edges(n),
it is also defined somehow on the edges in edges(n) (the induction step). With
this order, applying the node-coloring algorithm to the new graph is the same
as applying the edge-coloring algorithm to the original graph.

This point of view is used below to color the triangles in the special graph
known as triangulation.

11.8 Triangulation
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triangulation = conformal mesh of triangles

FIGURE 11.5: A triangulation, or a conformal mesh of triangles.

A triangulation is a special kind of graph, which looks like a mesh of tri-
angles (Figure 11.5). Below we present the axioms that produce this kind of
mathematical object. For this, however, we need some preliminary definitions.

A circle in a graph is a list of k edges in E of the form

(i1, i2), (i2, i3), (i3, i4), . . . , (ik−1, ik), (ik, i1),

where k is some natural number, and i1, i2, . . ., ik are some k nodes in N . In
particular, if k = 3, then this circle is called a triangle.

A subcircle of the above circle is a circle based on a subset of the set of k
nodes {i1, i2, . . . , ik}. For example, if (i2, i4), (i4, i7), and (i7, i2) are edges in
E, then they form a subcircle of the above circle. Because it contains three
edges, this particular subcircle is also a triangle.
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Let us now use these definitions to define a triangulation. A triangulation
is a graph with the following properties:

1. The graph is nonoriented.
2. The graph contains no edges of the form (i, i).
3. Each node in N is shared by at least two different edges in E as their joint

endpoint. (This guarantees that there are no dangling nodes or edges.)
4. The graph is embedded in the Cartesian plane in the sense that each node

i ∈ N is interpreted geometrically as a point (x(i), y(i)) ∈ R2, and each
edge of the form (i, j) ∈ E is interpreted as the line segment leading from
(x(i), y(i)) to (x(j), y(j)).

5. With the above geometric interpretation, two edges in E cannot cross each
other in R2. (This means that the graph is a planar graph.)

6. Each circle of k > 3 edges must contain a triangle as a subcircle. (This
guarantees that the graph is indeed a mesh of triangles.)

7. In the above geometrical interpretation in R2, each node that lies on an
edge must also serve as one of its endpoints. (This guarantees that the
triangulation is conformal in the sense that two triangles that share an
edge must share it in its entirety and must also share its endpoints as
their joint vertices.)

This formulation illustrates clearly how a mathematical object is created
in a purely abstract way. Indeed, with the above mathematical axioms, the
abstract notion of a graph as a set of nodes and a set of edges takes the much
better visualized form of a conformal mesh of triangles. Below we use this
form to color the triangle in the triangulation.

11.9 The Triangle-Coloring Problem

In the triangle-coloring problem, one has to assign a color (or a natural
number) to each triangle in the triangulation in such a way that two adja-
cent triangles (triangles that share an edge as their joint side and also share
its endpoints as their joint vertices) have distinct colors. As before, a good
coloring uses a moderate number of colors.

Below we introduce an algorithm to have a good triangle coloring. This
is done by introducing a new graph, in which the original triangle-coloring
problem takes the form of a node-coloring problem.

Indeed, the triangles in the triangulation may also serve as nodes in a new
nonoriented graph. In this new graph, two triangles are connected by an edge
if they are adjacent in the original triangulation, that is, if they share an edge
as their joint side and also share its endpoints as their joint vertices.
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Clearly, the node-coloring algorithm applied to this new graph yields a
triangle-coloring algorithm for the original triangulation. Because each trian-
gle has at most three neighbors, the resulting triangle coloring uses at most
four colors, which is nearly optimal. For example, in Figure 11.6 three colors
are used to color a triangulation with six triangles.
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FIGURE 11.6: The triangle-coloring algorithm uses three colors to color a
triangulation with six triangles. It is assumed that the triangles are ordered

counter-clockwise in the algorithm.

11.10 Weighted Graphs

In a weighted graph, a positive number (or weight) is assigned to each edge
in E. The weight assigned to an edge of the form (j, i) ∈ E is denoted by ai,j .
For completeness, we also define ai,j ≡ 0 whenever (j, i) 6∈ E.

The sum of the weights associated with edges that are issued from a par-
ticular node j ∈ N is equal to 1:

|N |∑
i=1

ai,j = 1.

Thanks to this formula, ai,j can be interpreted as the probability that a parti-
cle that initially lies at node j would use the edge leading from j to i to move
to node i. Below we give an example in which this probability is uniform.

In this example,

ai,j ≡
{ 1

|outgoing(j)| if (j, i) ∈ E

0 if (j, i) 6∈ E,

where outgoing(j) is the set of edges issued from j:

outgoing(j) ≡ {(j, i) ∈ E | i ∈ N},
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and |outgoing(j)| is its cardinality (number of edges in it). Indeed, these
weights sum to 1:

|N |∑
i=1

ai,j =
∑

{i∈N | (j,i)∈E}

1
|outgoing(j)|

= |outgoing(j)| 1
|outgoing(j)|

= 1.

The above weights allow one to define a flow in the graph, performed step
by step. To this end, assume that the nodes in N are also assigned nonnegative
numbers, called masses. However, unlike the weights assigned to the edges,
these masses may change step by step.

For example, assume that the node j ∈ N is assigned initially the mass
uj ≥ 0. Then, in the first step, this mass is transferred through edges of the
form (j, i) to their endpoints i. The node i at the end of such an edge receives
from j the mass ai,juj . This way, the mass uj that was originally concentrated
at the node j has been divided among the nodes i that serve as endpoints of
edges of the form (j, i).

This flow preserves the original mass uj . Indeed, the total amount of mass
transferred to the nodes of the form i is equal to the original mass concentrated
at j:

|N |∑
i=1

ai,juj = uj

|N |∑
i=1

ai,j = uj .

Clearly, after the above step, the node j contains no mass any more, unless
there exists a reflexive edge of the form (j, j) in E, in which case j also receives
the mass aj,juj after the above step.

The above procedure may repeat: in the next step, each mass received by
node i flows further to the endpoints of the edges issued from i. Thanks to the
property of mass preservation discussed above, the total mass in the graph
(the sum of the masses at all the nodes in N) remains uj after any number of
steps.

The mass distribution among the nodes in N is called a state. For example,
in the initial state above, the mass is concentrated at node j (in the amount
uj), and vanishes at all the other nodes in N . In the state obtained from this
state after one step, on the other hand, the mass is no longer concentrated at
one node only: it spreads to all the nodes i that lie at the end of an edge of
the form (j, i) (with the amount ai,juj).

In a more general state, each and every node j ∈ N may contain mass in
the amount uj . After one step, each such node contributes the amount ai,juj

to every node i that lies at the end of an edge of the form (j, i). Therefore, in
the next state, the node i will have mass in the total amount contributed to
it from all the nodes j, namely,

|N |∑
j=1

ai,juj .
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The total amount of mass in this state is still the same as in the previous
state. Indeed, the total mass in this state is

|N |∑
i=1

|N |∑
j=1

ai,juj =
|N |∑
j=1

|N |∑
i=1

ai,juj =
|N |∑
j=1

uj

|N |∑
i=1

ai,j =
|N |∑
j=1

uj ,

which is the total mass in the previous state. Thus, preservation of mass holds
for a general state as well.

Below we describe the flow in the graph in algebraic terms, using matrices
and vectors.

11.11 Algebraic Formulation

Assume that the nodes in N are numbered by the natural numbers

1, 2, 3, . . . , |N |.

With this numbering, the weights ai,j in the weighted graph form the |N |×|N |
matrix

A ≡ (ai,j)1≤i,j≤|N |.

Furthermore, the masses uj in the general state discussed above form the
|N |-dimensional vector u, whose jth component, uj , is the mass located at
the node j ∈ N . With these notations, the state obtained from u after one
step of the flow is represented by the |N |-dimensional vector Au. Indeed, the
ith component in this vector is

(Au)i =
|N |∑
j=1

ai,juj ,

which is indeed the mass at node i after one step.
Note that the columns of A sum to 1:

|N |∑
i=1

ai,j = 1, 1 ≤ j ≤ |N |.

This implies that the rows of the transpose matrix, At, also sum to 1. In
other words, the |N |-dimensional vector w whose all components are equal
to 1 (wj = 1, 1 ≤ j ≤ |N |) is an eigenvector of At corresponding to the
eigenvalue 1:

Atw = w.

As a consequence, 1 is also an eigenvalue of the original matrix A.
Below we also discuss the eigenvector of A corresponding to this eigenvalue.

This eigenvector represents the steady state of the flow.
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11.12 The Steady State

Here we assume that the weighted graph has no invariant subset of nodes
(subset of N out of which no mass can flow away). Under this assumption,
we discuss the steady state of the flow.

The steady state of the flow is a state that is represented by an eigenvector
v of the matrix A that corresponds to the eigenvalue 1:

Av = v.

Clearly, the vector v is defined only up to multiplication by a scalar. Indeed,
for any nonzero number α, αv represents a steady state as well:

A(αv) = αAv = αv.

From Peron-Frobenius theory [31], it follows that all the components of v
are positive:

vj > 0, 1 ≤ j ≤ |N |,

and that 1 is the largest eigenvalue of A: every other eigenvalue λ satisfies

|λ| < 1.

Let w be an |N |-dimensional vector that is the sum of the (pseudo-) eigen-
vectors of A corresponding to eigenvalues smaller than 1 in magnitude. Be-
cause the eigenvector v does not participate in this sum, w satisfies

‖Akw‖ →k→∞ 0.

Consider now an arbitrary initial state represented by the nonzero |N |-
dimensional vector u. Let us describe how, after sufficiently many steps, the
process converges to a steady state. Indeed, u can be written as

u = αv + (u− αv),

where u − αv can be written as the sum of the (pseudo-) eigenvectors of A
corresponding to eigenvectors smaller than 1 in magnitude. Now, the next
state is represented by the |N |-dimensional vector

Au = A(αv + (u− αv)) = A(αv) + A(u− αv),= αv + A(u− αv).

Similarly, by applying A k times, we have that the kth state [the state after
the (k − 1)st step] is

Aku = Ak(αv + (u− αv)) = Ak(αv) + Ak(u− αv) = αv + Ak(u− αv).

Because
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‖Ak(u− αv)‖ →k→∞ 0,

we have that the flow converges to the steady state αv:

Aku→k→∞ αv.

Thus, the conclusion is that, as the number of steps grows, the mass distribu-
tion among the nodes in N approaches a steady state represented by a scalar
times v, regardless of the initial state u. More precisely, thanks to the fact
that the total mass is preserved, the coefficient α satisfies

α =

∑|N |
j=1 |uj |∑|N |
j=1 vj

.

11.13 Exercises

1. Show that the maximal number of edges in an oriented graph with |N |
nodes is |N |2.

2. Show that the maximal number of edges that connect a node in N to itself
in an oriented graph is |N |.

3. Show in two different ways that the maximal number of edges that connect
two distinct nodes in N in an oriented graph is |N |(|N | − 1).

4. Show that the maximal number of edges that connect two distinct nodes
in N in a nonoriented graph is(

|N |
2

)
=
|N |(|N | − 1)

2
.

5. Show that the maximal number of edges that connect a node in N to itself
in a nonoriented graph is |N |.

6. Conclude that the maximal number of edges in a nonoriented graph with
|N | nodes is |N |(|N |+ 1)/2.

7. Solve the previous exercise in yet another way: add a dummy (|N |+ 1)st
node to the graph, and replace each edge connecting a node to itself in
the original graph by an edge connecting the node to the dummy node
in the new graph. Since the new graph is of |N | + 1 nodes, what is the
maximal number of edges that connect two distinct nodes in it?

8. Show that the edge-coloring problem can be viewed as a special case of
the node-coloring problem for a nonoriented graph.

9. Show that the triangle-coloring problem can be viewed as a special case
of the node-coloring problem for a nonoriented graph.

10. Show that the edge-coloring algorithm can be viewed as a special case of
the node-coloring algorithm for a nonoriented graph.
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11. Show that the triangle-coloring algorithm can be viewed as a special case
of the node-coloring algorithm for a nonoriented graph.

12. Write the node-coloring algorithm for an oriented graph in matrix formu-
lation. The solution can be found in Chapter 19, Section 19.2.

13. Write the edge-coloring algorithm for an oriented graph in matrix formu-
lation. The solution can be found in Chapter 19, Section 19.3.

14. Write the node-coloring algorithm for a nonoriented graph in matrix for-
mulation. The solution can be found in Chapter 19, Section 19.8.

15. Write the edge-coloring algorithm for a nonoriented graph in matrix for-
mulation. The solution can be found in Chapter 19, Section 19.8.

16. Show that the triangle-coloring algorithm uses at most four colors to color
any triangulation.

17. Let m be the maximal number of edges issued from or directed to a node
in a given graph. Show that the node-coloring algorithm uses at most
m + 1 colors to color the nodes in the graph.

18. A color may be viewed as a maximal subset of nodes that are decoupled
from each other (are not connected by an edge). (By “maximal” we mean
here that no node can be added to it.) Write an algorithm that produces
a color as follows: initially, all the nodes are colored. Then, the nodes are
scanned one by one; for each colored node encountered, the color is erased
from all of its neighbors. (In other words, the neighbors are uncolored,
and dropped from the set of colored nodes.)

19. Repeat the above algorithm also for the set of the nodes that have re-
mained uncolored, to produce a new color that is disjoint from the first
color.

20. Repeat the above algorithm until all the nodes are colored by some color.
This yields an alternative node-coloring algorithm.

21. Highlight the disadvantage of the above alternative node-coloring algo-
rithm: since it is not based on mathematical induction, it cannot be used
to add an extra node to an existing colored graph and color it properly
too.

22. Use the interpretation of the edge-coloring problem as a node-coloring
problem in the graph of edges to extend the above algorithm into an
alternative edge-coloring algorithm.

23. Highlight the disadvantage of the above alternative edge-coloring algo-
rithm: since it is not based on mathematical induction, it cannot be used
to add an extra node to an existing colored graph and color the edges that
are issued from or directed to it properly as well.

24. Generalize the above definition of a triangulation into the definition of a
mesh of cells of k vertices (where k is a given natural number). Make
sure that your definition of a mesh of cells of 3 vertices agrees with the
original definition of a triangulation.
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Polynomials

A real polynomial is a function p : R→ R defined by

p(x) ≡ a0 + a1x + a2x
2 + · · ·+ anxn =

n∑
i=0

aix
i,

where n is a nonnegative integer called the degree of the polynomial, and
a0, a1, a2 . . . , an are given real numbers called the coefficients.

Thus, to define a concrete polynomial it is sufficient to specify its coefficients
a0, a1, a2 . . . , an. Thus, the polynomial is equivalent to the (n+1)-dimensional
vector

(a0, a1, a2 . . . , an).

A complex polynomial is different from a real polynomial in that the coeffi-
cients a0, a1, a2 . . . , an, as well as the variable x, can be not only real but also
complex. This makes the polynomial a complex function p : C→ C.

12.1 Adding Polynomials

The interpretation of polynomials as (n + 1)-dimensional vectors is useful
in some arithmetic operations. For example, if another polynomial of degree
m ≤ n

q(x) ≡
m∑

i=0

bix
i

is also given, then the sum of p and q is defined by

(p + q)(x) ≡ p(x) + q(x) =
n∑

i=0

(ai + bi)xi,

where, if m < n, one also needs to define the fictitious zero coefficients

bm+1 = bm+2 = · · · = bn ≡ 0.

(Without loss of generality, one may assume that m ≤ n; otherwise, the roles
of p and q may interchange.)

203
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In other words, the vector of coefficients associated with the sum p+q is the
sum of the individual vectors associated with p and q (extended by leading
zero components if necessary, so that they are both (n + 1)-dimensional).
Thus, the interpretation of polynomials as vectors of coefficients helps us to
add them by just adding their vectors.

12.2 Multiplying a Polynomial by a Scalar

The representation of the polynomial as a vector also helps to multiply it
by a given scalar a:

(ap)(x) ≡ a · p(x) = a
n∑

i=0

aix
i =

n∑
i=0

(aai)xi.

Thus, the vector of coefficients associated with the resulting polynomial ap is
just a times the original vector associated with the original polynomial p.

12.3 Multiplying Polynomials

Here we consider the task of multiplying the two polynomials p and q to
obtain the new polynomial pq. Note that we are not only interested in the
value p(x)q(x) for a given x. Indeed, this value can be easily obtained by
calculating p(x) and q(x) separately and multiplying the results. We are ac-
tually interested in much more than that: we want to have the entire vector
of coefficients of the new polynomial pq. This vector is useful not only for the
efficient calculation of p(x)q(x), but also for many other purposes as well.

Unfortunately, two vectors cannot be multiplied to produce a new vector.
Thus, algebraic operations between vectors are insufficient to produce the
required vector of coefficients of the product pq: a more sophisticated approach
is required.

The product of the two polynomials p (of degree n) and q (of degree m) is
defined by

(pq)(x) ≡ p(x)q(x) =
n∑

i=0

aix
i

m∑
j=0

bjx
j =

n∑
i=0

m∑
j=0

aibjx
i+j .

Note that this sum scans the n + 1 by m + 1 grid

{(i, j) | 0 ≤ i ≤ n, 0 ≤ j ≤ m}.
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FIGURE 12.1: Multiplying the polynomial p(x) = a0 + a1x + a2x
2 + a3x

3 by
the polynomial q(x) = b0 + b1x + b2x

2 by summing the terms diagonal by diagonal,
where the kth diagonal (0 ≤ k ≤ 5) contains terms with xk only.

However, it makes more sense to calculate this sum diagonal by diagonal,
scanning diagonals with constant powers of x (Figure 12.1). These diagonals
are indexed by the new index k = i + j = 0, 1, 2, . . . , n + m in the following
sum:

(pq)(x) =
n∑

i=0

m∑
j=0

aibjx
i+j =

n+m∑
k=0

min(k,n)∑
i=max(0,k−m)

aibk−ix
k.

Thus, the product polynomial pq is associated with the vector of coefficients

(c1, c2, c3, . . . , cn+m) = (ck)n+m
k=0 ,

where the coefficients ck are defined by

ck ≡
min(k,n)∑

i=max(0,k−m)

aibk−i.

Note that, when q is a trivial polynomial of degree m = 0, that is, when q
is the constant function

q(x) ≡ b0,

the above definition agrees with the original definition of a scalar times a
polynomial. Indeed, in this case, the coefficients ck reduce to

ck =
k∑

i=k

aibk−i = akb0

(0 ≤ k ≤ n), so

(pq)(x) =
n∑

k=0

ckxk =
n∑

k=0

b0akxk = b0

n∑
i=0

aix
i = b0 · p(x),

as in the original definition of the scalar b0 times the polynomial p(x).
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12.4 Computing a Polynomial

A common problem is to compute the value of p(x) for a given x. The naive
approach to do this requires three stages. First, calculate the powers of x

x2, x3, x4, . . . , xn.

Then, multiply these powers by the corresponding coefficients to obtain

a1x, a2x
2, a3x

3, . . . , anxn.

Finally, sum up these terms to obtain

a0 + a1x + a2x
2 + · · ·+ anxn = p(x).

The first stage above can be done recursively:

xi = x · xi−1

for i = 2, 3, 4, . . . , n. This requires n − 1 multiplications. Furthermore, the
second stage above requires another n multiplications, and the third stage
requires n additions. Thus, the total cost of computing p(x) for a given x is
2n− 1 multiplications and n additions.

Can this calculation be done more efficiently? Yes, it can. For this, one
needs to introduce parentheses and take a common factor out of them.

Consider the problem of computing

ab + ac,

where a, b, and c are given numbers. At first glance, it would seem that this
calculation requires two multiplications to calculate ab and ac, and then one
addition to calculate the required sum ab+ac. However, this can be done more
efficiently by using the distributive law to introduce parentheses and take the
common factor a out of them:

ab + ac = a(b + c).

Indeed, the right-hand side in this equation can be calculated more efficiently
than the left-hand side: it requires only one addition to calculate b + c, and
then one multiplication to calculate a(b + c).

The same idea also works in the efficient calculation of

p(x) =
n∑

i=0

aix
i

for a given x. Here, the task is to sum up not only two terms as in ab + ac,
but rather n + 1 terms. Although these terms contain no common factor, the
n final terms
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a1x, a2x
2, a3x

3, . . . , anxn

share the common factor x. This common factor can indeed be taken out of
parentheses to yield a more efficient computation method. In fact, this leads
to the representation of the original polynomial p(x) as

p(x) = a0 + xp1(x),

where p1(x) is defined by

p1(x) = a1 + a2x + a3x
2 + · · ·+ anxn−1 =

n−1∑
i=0

ai+1x
i.

Now, thanks to the fact that p1(x) is a polynomial of degree n− 1 only, the
value of p1(x) can be calculated recursively by the same method itself. This
is Horner’s algorithm for computing the value of p(x) efficiently [17].

Let us show that the calculation of p(x) by the above algorithm requires n
multiplications and n additions only. This is done by mathematical induction
on the degree n. Indeed, for n = 0, p(x) is the just the constant function
p(x) ≡ a0, so its calculation requires 0 multiplications and 0 additions. Assume
now that the induction hypothesis holds, that is, that we already know that
the calculation of a polynomial of degree n− 1 requires n− 1 multiplications
and n − 1 additions. In particular, the calculation of the polynomial p1(x)
defined above requires n− 1 multiplications and n− 1 additions. In order to
calculate

p(x) = a0 + xp1(x),

one needs one extra multiplication to calculate xp1(x), and one extra addition
to calculate a0+xp1(x). Thus, in summary, p(x) has been calculated in a total
number of n multiplications and n additions, as asserted.

12.5 Composition of Polynomials

Horner’s algorithm is useful not only in computing the value of a polyno-
mial, but also in the composition of two polynomials. The composition of the
two polynomials p and q is defined by

(p ◦ q)(x) ≡ p(q(x)).

Note that we are not only interested here in the calculation of the value of
(p◦q)(x) for a given x. Indeed, this value can be easily calculated by calculating
q(x) first, and then using the result as the argument in the polynomial p to
calculate p(q(x)). Here, however, we are interested in much more than that:
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we want to have the entire vector of coefficients of the new polynomial p ◦ q.
This vector is most useful in many applications.

The algorithm to obtain the entire vector of coefficients of p ◦ q is defined
by mathematical induction on the degree of p, n. Indeed, for n = 0, p is just
the constant function p(x) ≡ a0, so

(p ◦ q)(x) = p(q(x)) = a0

as well. Assume now that we know how to obtain the entire vector of coeffi-
cients of p1 ◦ q for any polynomial p1 of degree at most n − 1. In particular,
this applies to the polynomial p1 defined in the previous section. Furthermore,
we also know how to multiply the two polynomials q and p1 ◦ q to obtain the
entire vector of coefficients of the product

q · (p1 ◦ q).

Finally, we only have to add a0 to the first coefficient in this vector to obtain
the required vector of coefficients of the polynomial

(p ◦ q) = p(q(x)) = a0 + q(x)p1(q(x)) = a0 + q(x)(p1 ◦ q)(x).

12.6 Natural Numbers as Polynomials

The notion of the polynomial is also useful in the representation of natural
numbers. Indeed, consider the natural number k, 10n ≤ k < 10n+1 for some
natural number n. The common decimal representation of k as a sequence of
digits

anan−1an−2 · · · a1a0

can also be viewed as the polynomial

k = a0 + a1 · 10 + a2 · 102 + · · ·+ an · · · 10n =
n∑

i=0

ai · 10i = p(10).

In other words, the decimal representation of k is nothing but a polynomial
in the argument 10 (the decimal base), with vector of coefficients consisting
of the digits used to form the decimal representation of k.

Similarly, consider the natural number l, 2n ≤ l < 2n+1 for some natural
number n. The binary representation of l can also be viewed as the value of a
polynomial p in the argument 2 (the binary base), with vector of coefficients

a0, a1, a2, . . . , an

that are either 0 or 1:

l = a0 + a1 · 2 + a2 · 22 + · · ·+ an · 2n = p(2).
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12.7 Computing a Monomial

As we have seen above, each natural number l can be written as l = p(2),
where p is a polynomial with coefficients that are either 0 or 1. Let us use this
binary representation in the efficient calculation of the value of the monomial
xl for a given x.

The recursive algorithm to complete this task is rather expensive. Indeed,
it requires l − 1 multiplications:

xi = x · xi−1, i = 2, 3, 4, . . . , l.

The advantage of this approach is that it computes not only xl but also all
the powers of the form xi, 1 < i ≤ l. Still, what if we don’t need all these
powers? Is there an algorithm that computes xl alone more efficiently?

Yes, there is: Horner’s algorithm can be used to compute the value of xl

in at most 2n multiplications. Since 2n ≤ l < 2n+1, 2n is usually far smaller
than l, which leads to a considerable reduction in the total cost.

From Horner’s algorithm, we have

p(2) = a0 + 2p1(2).

Thus,

xl = xp(2) = xa0+2p1(2) = xa0x2p1(2) = xa0(x2)p1(2) =
{

x · (x2)p1(2) if a0 = 1
(x2)p1(2) if a0 = 0.

The calculation of the above right-hand side requires one multiplication
to calculate x2 (to be used in the recursive application of the algorithm to
calculate (x2)p1(2)), and then at most one other multiplication to multiply the
result by x if a0 = 1. It is easy to prove by induction that the entire recursive
algorithm indeed requires at most 2n multiplications, where n is the degree
of p, or the number of digits in the binary representation of l.

Note that, in the above representation of l as the binary polynomial

l = p(2) = a0 + 2p1(2),

a0 is just the binary unit digit. Thus, if l is even, then

a0 = 0 and p1(2) = l/2.

If, on the other hand, l is odd, then

a0 = 1 and p1(2) = (l − 1)/2.

Thus, the above recursive algorithm to calculate xl can be written more in-
formatively as

xl =
{

x · (x2)(l−1)/2 if l is odd
(x2)l/2 if l is even.

This compact form is useful below.
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12.8 Derivative

The derivative of the polynomial

p(x) =
n∑

i=0

aix
i

of degree n is the polynomial of degree n− 1

p′(x) ≡
{

0 |mboxifn = 0∑n
i=1 aiix

i−1 if n > 0

([7] [19]).
Furthermore, because the derivative p′(x) is by itself a polynomial in x, it

can be derived as well, to yield the so-called second derivative of p:

(p′(x))′ = p′′(x).

12.9 Indefinite Integral

The indefinite integral of the polynomial

p(x) =
n∑

i=0

aix
i

is defined to be the polynomial of degree n + 1

P (x) =
n∑

i=0

ai

i + 1
xi+1.

Note that the indefinite integral P (x) is characterized by the property that
its derivative is the original polynomial p(x):

P ′(x) = p(x).

12.10 Integral over an Interval

The indefinite integral is most useful to calculate areas. In particular, the
area of the 2-d region bounded by the x-axis, the graph of p(x), and the
verticals to the x-axis at the points x = a and x = b is given by
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a

p(x)dx = P (b)− P (a).

In particular, when a = 0 and b = 1, this is the integral of the function p(x)
over the unit interval [0, 1]:∫ 1

0

p(x)dx = P (1)− P (0) = P (1).

12.11 Sparse Polynomials

Horner’s algorithm for computing the value of p(x) for a given x is efficient
for a dense polynomial, with many nonzero coefficients, but not necessarily
for a sparse polynomial, with only a few nonzero coefficients. Consider, for
example, the polynomial

p(x) = xl = x · x · x · · · · · x (l times).

For computing the value of this polynomial, Horner’s algorithm reduces to
the naive algorithm, which multiplies x by itself l− 1 times. As we have seen
above, this algorithm is far less efficient than the recursive algorithm

xl =


x if l = 1

x · (x2)(l−1)/2 if l > 1 and l is odd
(x2)l/2 if l > 1 and l is even.

Let us study Horner’s algorithm, and why it is not always efficient. Well, as
discussed above, the idea behind Horner’s algorithm is to introduce parenthe-
ses in the original polynomial and take the common factor x out of them. This
makes sense for dense polynomials, but not for sparse polynomials: indeed, in
sparse polynomials, it makes much more sense to take the much larger com-
mon factor xl out of the parentheses, yielding a much more efficient recursive
algorithm.

Indeed, the sparse polynomial p(x) of degree n can be written as the sum
of a few monomials, each multiplied by its corresponding coefficient:

p(x) = a0 + alx
l + akxk + · · ·+ anxn,

where a0 is either zero or nonzero, l > 0 is the index of the next nonzero
coefficient al 6= 0, k > l is the index of the next nonzero coefficient ak 6= 0,
and n > k is the index of the final nonzero coefficient an 6= 0.

Here we introduce a modified version of Horner’s algorithm for computing
the value of this polynomial for a given x. In this version, the factor xl is
taken out of parentheses:
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p(x) = a0 + xlp1(x),

where
p1(x) ≡ al + akxk−l + · · ·+ anxn−l.

Thanks to the fact that the degree of p1 is smaller than n, the value of p1(x)
can be calculated recursively by the same algorithm itself. Thus, the modified
Horner’s algorithm for computing the value of the sparse polynomial p(x) for
a given x reads as follows:

p(x) =
{

a0 + xlp1(x) if a0 6= 0
xlp1(x) if a0 = 0,

where xl is computed efficiently by the recursive algorithm:

xl =


x if l = 1

x · (x2)(l−1)/2 if l > 1 and l is odd
(x2)l/2 if l > 1 and l is even.

This completes the definition of the modified Horner’s algorithm for com-
puting the value of the sparse polynomial p(x) for a given x. Below, we use a
version of this algorithm also to obtain the entire vector of coefficients of the
composition p ◦ q, where p is a sparse polynomial as above.

12.12 Composition of Sparse Polynomials

Similarly, when p is a sparse polynomial, the composition of the two poly-
nomials p and q may not necessarily benefit from the traditional Horner’s
algorithm. Indeed, consider again the extreme case, in which

p(x) = xl.

In this case,
(p ◦ q)(x) = p(q(x)) = ql(x).

Now, the traditional Horner’s algorithm for obtaining the entire vector of
coefficients of this composition of polynomials reduces to the naive algorithm,
which multiplies the polynomial q by itself l − 1 times. A far more efficient
approach is to use the recursive algorithm

ql =


q if l = 1

q · (q2)(l−1)/2 if l > 1 and l is odd
(q2)l/2 if l > 1 and l is even.

Now, consider the sparse polynomial p of degree n discussed in the previous
section. Recall that this polynomial can be represented as

© 2009 by Taylor and Francis Group, LLC



12.13. POLYNOMIALS OF TWO VARIABLES 213

p(x) = a0 + xlp1(x),

where p1 is a polynomial of degree n− l. This representation can be used to
compute the entire vector of coefficients of the composition of p and q. Indeed,
for any argument x, we have

(p ◦ q)(x) = p(q(x)) = a0 + ql(x)p1(q(x)) = a0 + ql(x)(p1 ◦ q)(x).

More compactly, we have

p ◦ q = a0 + ql · (p1 ◦ q).

Thanks to the fact that the degree of p1 is n− l only, its vector of coefficients
can be obtained recursively by the same algorithm itself. Furthermore, the
vector of coefficients of ql can be obtained as in the beginning of this section.
Then, ql and p1 ◦ q are multiplied to yield the vector of coefficients of the
product ql ·(p1◦q). Finally, if a0 6= 0, then a0 should be added in the beginning
of this vector of coefficients, to yield the required vector of coefficients of p◦q.
This completes the definition of the modified Horner’s algorithm for producing
the entire vector of coefficients of the composition of the sparse polynomial p
with q.

12.13 Polynomials of Two Variables

A real polynomial of two variables is a function p : R2 → R that can be
written in the form

p(x, y) =
n∑

i=0

ai(x)yi,

where x and y are real numbers, and ai(x) (0 ≤ i ≤ n) is a real polynomial
in the variable x. We also refer to p(x, y) as a 2-d polynomial.

Similarly, a complex polynomial in two variables is a function p : C2 → C
with the same structure, except that x and y may be complex numbers, and
the polynomials ai(x) may also be complex polynomials.

The arithmetic operation between polynomials of two variables are similar
to those defined above for polynomials of one variable only. The only difference
is that here the coefficients ai are no longer scalars but rather polynomials in
the variable x, so the arithmetic operations between the two original polyno-
mials of two variables involve not just sums and products of scalars but rather
sums and products of polynomials of one variable. For example, if

p(x, y) =
n∑

i=0

ai(x)yi and q(x, y) =
m∑

j=0

bj(x)yj
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are two polynomials of two variables for some natural numbers m ≤ n, then

(p + q)(x, y) = p(x, y) + q(x, y) =
n∑

i=0

(ai + bi)(x)yi,

where
(ai + bi)(x) = ai(x) + bi(x)

is the sum of the two polynomials ai and bi, and, if m < n, then

bm+1 = bm+2 = · · · = bn ≡ 0

are some dummy zero polynomials.
Furthermore, the product of p and q is

(pq)(x, y) = p(x, y)q(x, y)

=

(
n∑

i=0

ai(x)yi

) m∑
j=0

bj(x)yj


=

n∑
i=0

 m∑
j=0

(aibj)(x)yi+j

 ,

which is just the sum of n polynomials of two variables.
Later on in the book, we implement this formula to multiply two polynomial

objects of two variables by each other.

12.14 Partial Derivatives

The partial derivative of the polynomial of two variables

p(x, y) =
n∑

i=0

ai(x)yi

with respect to the first variable x is the polynomial of two variables px(x, y)
obtained by viewing the second variable y as if it were a fixed parameter and
deriving p(x, y) as if it were a polynomial of the only variable x:

px(x, y) ≡
n∑

i=0

a′i(x)yi,

where a′i(x) is the derivative of ai(x).
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Similarly, the partial derivative of p(x, y) with respect to the second variable
y is the polynomial of two variables py(x, y) obtained by viewing the first
variable x as if it were a fixed parameter and deriving p(x, y) as if it were a
polynomial of the only variable y:

py(x, y) ≡
{

0 if n = 0∑n
i=1 ai(x)iyi−1 if n > 0.

12.15 The Gradient

The gradient of p(x, y), denoted by ∇p(x, y), is the 2-d vector whose first
coordinate is px(x, y) and second coordinate is py(x, y):

∇p(x, y) ≡
(

px(x, y)
py(x, y)

)
.

Thus, the gradient of p is actually a vector function that not only takes but
also returns a 2-d vector:

∇p : R2 → R2,

or
∇p ∈ (R2)R2

.

12.16 Integral over the Unit Triangle
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FIGURE 12.2: The unit triangle.

Consider the unit (right-angled) triangle
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1− x

FIGURE 12.3: Integration on the unit triangle: for each fixed x, the
integration is done over the vertical line 0 ≤ y ≤ 1− x.

t ≡ {(x, y) | 0 ≤ x, y, x + y ≤ 1}

(see Figure 12.2). The integral over this triangle of the polynomial of two
variables

p(x, y) =
n∑

i=0

ai(x)yi

is the volume of the 3-d region bounded by the triangle, the graph (or mani-
fold) of p(x, y), and the planes that are perpendicular to the x-y plane at the
edges of the triangle. This volume is denoted by∫ ∫

t

p(x, y)dxdy.

To calculate this integral, let 0 ≤ x < 1 be a fixed parameter, as in Figure
12.3. Let P (x, y) be the indefinite integral of p(x, y) with respect to y:

P (x, y) =
n∑

i=0

ai(x)
i + 1

yi+1.

Note that P (x, y) is characterized by the property that its partial derivative
with respect to y is the original polynomial p(x, y):

Py(x, y) = p(x, y).

Consider now the line segment that is vertical to the x-axis and connects
the points (x, 0) to (x, 1 − x) (see Figure 12.3). Let us construct the plane
that is perpendicular to the x-y plane at this line segment. This plane cuts
a slice from the above 3-d region that lies on top of this line segment and is
also bounded by the graph of p(x, y) and the verticals to the x-y plane at the
points (x, 0) and (x, 1− x). The area of this slice is∫ 1−x

0

p(x, y)dy = P (x, 1− x)− P (x, 0) = P (x, 1− x).
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The desired volume of the above 3-d region is now obtained by repeating the
above for each fixed 0 ≤ x < 1, multiplying each slice by an infinitesimal
width dx, and summing up the volumes of all the individual slices:∫ ∫

t

p(x, y)dxdy =
∫ 1

0

P (x, 1− x)dx.

12.17 Second Partial Derivatives

Because the partial derivative is by itself a polynomial of two variables,
it can be derived as well, to yield the so-called second partial derivatives of
the original polynomial p(x, y). For example, the partial derivative of px with
respect to y is

pxy(x, y) = (px(x, y))y.

Clearly, the order in which the partial derivation is carried out doesn’t matter:

pxy(x, y) = pyx(x, y).

This second partial derivative is also referred to as the (1, 1)th partial deriva-
tive of the original polynomial p, because it can be written as

px1y1(x, y).

With this terminology, the (0, 0)th partial derivative of p is nothing but p
itself:

px0y0(x, y) = p(x, y).

Moreover, one can derive a second partial derivative once again to produce a
derivative of order three. For example, the (2, 1)th partial derivative of p is

px2y1(x, y) = pxxy(x, y).

In general, the order of the (i, j)th partial derivative of p is the sum i + j.
From Chapter 10, Section 10.15, it follows that the total number of different
partial derivatives of order up to n is(

n + 2
2

)
=

(n + 2)!
2(n!)

.

Furthermore, from the formulas at the end of Section 10.15 it follows that the
total number of different partial derivatives of order n exactly is(

n + 2− 1
2− 1

)
=
(

n + 1
1

)
= n + 1.
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12.18 Degree

Let us write each polynomial ai(x) above explicitly as

ai(x) =
∑

j

ai,jx
j ,

where the ai,j ’s are some scalars. The polynomial of two variables can now be
written as

p(x, y) =
∑

i

ai(x)yi =
∑

i

∑
j

ai,jx
jyi.

The degree of p is the maximal sum i + j for which a monomial of the form
ai,jx

jyi (with ai,j 6= 0) appears in p. From Chapter 10, Section 10.15, it
follows that the total number of monomials of the form ai,jx

jyi (with either
ai,j 6= 0 or ai,j = 0) that can appear in a polynomial of degree n is(

n + 2
2

)
=

(n + 2)!
n! · 2!

.

12.19 Polynomials of Three Variables

Similarly, a polynomial of three variables is obtained by introducing the
new independent variable z:

p(x, y, z) =
n∑

i=0

ai(x, y)zi,

where the coefficients ai are now polynomials of the two independent variables
x and y. We also refer to p(x, y, z) as a 3-d polynomial.

The arithmetic operations between such polynomials is defined in the same
way as before, with the only change that the sums and products of the ai’s
are now interpreted as sums and products of polynomials of two variables.
The full implementation is given later in the book.

12.20 Partial Derivatives

The partial derivative of the polynomial of three variables
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p(x, y, z) =
n∑

i=0

ai(x, y)zi

with respect to the first variable x is the polynomial of three variables
px(x, y, z) obtained by viewing the second and third variables, y and z, as
if they were fixed parameters, and deriving p(x, y, z) as if it were a polyno-
mial of the only variable x:

px(x, y, z) ≡
n∑

i=0

(ai)x(x, y)zi.

Similarly, the partial derivative of p(x, y, z) with respect to the second vari-
able y is the polynomial of three variables py(x, y, z) obtained by viewing
the first and third variables, x and z, as if they were fixed parameters, and
deriving p(x, y, z) as if it were a polynomial of the only variable y:

py(x, y, z) ≡
n∑

i=0

(ai)y(x, y)zi.

Finally, the partial derivative of p(x, y, z) with respect to the third variable
z is the polynomial of three variables pz(x, y, z) obtained by viewing the first
and second variables x and y as if they were fixed parameters, and deriving
p(x, y, z) as if it were a polynomial of the only variable z:

pz(x, y, z) ≡
{

0 if n = 0∑n
i=1 ai(x, y)izi−1 if n > 0.

12.21 The Gradient

The gradient of p(x, y, z), denoted by ∇p(x, y, z), is the 3-d vector whose
first coordinate is px(x, y, z), its second coordinate is py(x, y, z), and its third
coordinate is pz(x, y, z):

∇p(x, y, z) ≡

px(x, y, z)
py(x, y, z)
pz(x, y, z)

 .

Thus, the gradient of p is actually a vector function that not only takes but
also returns a 3-d vector:

∇p : R3 → R3,

or
∇p ∈ (R3)R3

.
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12.22 Integral over the Unit Tetrahedron
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FIGURE 12.4: The unit tetrahedron.

The unit (right-angled) tetrahedron in the 3-d Cartesian space is defined
by

T ≡ {(x, y, z) | 0 ≤ x, y, z, x + y + z ≤ 1}

(see Figure 12.4). The integral of the 3-d polynomial

p(x, y, z) ≡
n∑

i=0

ai(x, y)zi

over this tetrahedron is calculated as follows:∫ ∫ ∫
T

p(x, y, z)dxdydz =
∫ ∫

t

P (x, y, 1− x− y)dxdy,

where t is the unit triangle in Figure 12.2, and P (x, y, z) is the indefinite
integral of p(x, y, z) with respect to the z spatial direction:

P (x, y, z) =
n∑

i=0

ai(x, y)
i + 1

zi+1.

The computer code that calculates this integral is provided later on in the
book.

12.23 Directional Derivatives

Let n be a fixed vector in R3:
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n ≡

n1

n2

n3

 .

Assume also that n is a unit vector:

‖n‖2 ≡
√

n2
1 + n2

2 + n2
3 = 1.

The directional derivative of p(x, y, z) in the direction specified by n is the
inner product of the gradient of p at (x, y, z) with n:

(n,∇p(x, y, z)) = nt∇p(x, y, z) = n1px(x, y, z) + n2py(x, y, z) + n3pz(x, y, z).

12.24 Normal Derivatives

Assume now that n is normal (or orthogonal, or perpendicular) to a par-
ticular line or plane in R3, that is, n produces a zero inner product with the
difference of any two distinct points on the line or on the plane. For example,
consider the line

{(x, y, 0) | x + y = 1} .

(This line contains one of the edges in the unit tetrahedron in Figure 12.4.)
In this case, n could be either

n =

0
0
1


or

n =
1√
2

1
1
0


(or any linear combination of these two vectors, normalized to have l2-norm
that is equal to 1). In fact, if ∂/∂x denotes the operator of partial derivation
with respect to x and ∂/∂y denotes the operator of partial derivation with
respect to y, then the above normal derivation can be denoted by

1√
2

(
∂

∂x
+

∂

∂y

)
.

For yet another example, consider the plane

{(x, y, z) | x + y + z = 1} .
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(This plane contains the largest side in the unit tetrahedron.) In this case, the
normal vector n is

n =
1√
3

1
1
1

 .

In fact, if ∂/∂z denotes the operator of partial derivation with respect to z,
then the above normal derivation can be denoted by

1√
3

(
∂

∂x
+

∂

∂y
+

∂

∂z

)
.

Because the normal derivative is by itself a polynomial in three variables, it
has normal derivatives as well. The normal derivatives of a normal derivative
are called second normal derivatives. Similarly, for n = 1, 2, 3, . . ., the normal
derivative of the nth normal derivative is called the (n+1)st normal derivative.

For example, the nth normal derivative of a monomial of the form xayb in
the direction

1√
2

1
1
0


is (

1√
2

(
∂

∂x
+

∂

∂y

))n

(xayb)

=
1

2n/2

n∑
k=0

(
n
k

)(
∂

∂x

)k (
∂

∂y

)n−k

(xayb)

=
1

2n/2

n∑
k=0

(
n
k

)
Ca,kCb,n−kxa−kyb−(n−k),

where Ca,k is as in Chapter 10, Section 10.17. Furthermore, from the formula
proved there, it follows that, at the point (x, y, z) = (1/2, 1/2, 0), this nth
normal derivative is equal to

Ca+b,n

2n/2+a+b−n
.

Similarly, from Chapter 10, Section 10.18, it follows that the nth normal
derivative of a monomial of the form xaybzc in the direction

1√
3

1
1
1


is
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1√
3

(
∂

∂x
+

∂

∂y
+

∂

∂z

))n

(xaybzc)

=
1

3n/2

∑
0≤l,j,m≤n, l+j+m=n

n!
l!j!m!

(
∂

∂x

)l (
∂

∂y

)j (
∂

∂z

)m

(xaybzc)

=
1

3n/2

∑
0≤l,j,m≤n, l+j+m=n

n!
l!j!m!

Ca,lCb,jCc,mxa−lyb−jzc−m.

Furthermore, from the formula at the end of Section 10.18, at the point
(x, y, z) = (1/3, 1/3, 1/3) this nth normal derivative is equal to

Ca+b+c,n

3n/2+a+b+c−n
.

12.25 Tangential Derivatives

Assume now that n is parallel to a line or a plane in the 3-d Cartesian
space, that is, it is orthogonal (perpendicular) to any vector that is normal
to the line or the plane. Then the directional derivative in direction n is also
called the tangential derivative to the line or the plane in direction n.

12.26 High-Order Partial Derivatives

Because a partial derivative is by itself a polynomial of three variables, it
can be derived as well. For example, the derivative of px with respect to z is

pxz(x, y, z) = (px(x, y, z))z.

Clearly, the order in which the derivation takes place is immaterial:

pxz(x, y, z) = pzx(x, y, z).

Furthermore, the (i, j, k)th partial derivative of p is

pxiyjzk(x, y, z) =

((
∂

∂x

)i(
∂

∂y

)j (
∂

∂z

)k

p

)
(x, y, z).

For example, the (2, 1, 0)th partial derivative of p is

px2y1z0(x, y, z) = pxxy(x, y, z).
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Furthermore, the (0, 0, 0)th partial derivative of p is p itself:

px0y0z0(x, y, z) = p(x, y, z).

The order of the (i, j, k)th derivative is the sum i+ j +k. From Chapter 10,
Section 10.15, it follows that the total number of different partial derivatives
of order up to n (where n is a given natural number) is(

n + 3
3

)
=

(n + 3)!
6(n!)

.

Furthermore, from the formulas at the end of Section 10.15, it follows that
the total number of different partial derivatives of order n exactly is(

n + 3− 1
3− 1

)
=
(

n + 2
2

)
=

(n + 2)!
2(n!)

.

12.27 The Hessian

Let p(x, y, z) be a polynomial of three variables. Let us denote the row
vector that is the transpose of the gradient of p by

∇tp(x, y, z) ≡ (∇p(x, y, z))t = (px(x, y, z), py(x, y, z), pz(x, y, z)).

More compactly, this can be written as

∇tp ≡ (∇p)t = (px, py, pz).

The Hessian is the 3 × 3 matrix that contains the second partial derivatives
of p:

(∇∇tp)(x, y, z) ≡ ∇(∇tp)(x, y, z) = ∇(px(x, y, z), py(x, y, z), pz(x, y, z)).

More compactly, this can be written as

∇∇tp = (∇px | ∇py | ∇pz).

Thanks to the property that partial derivation is independent of the order in
which it is carried out, that is,

pxy = pyx

pxz = pzx

pyz = pzy,

we have that the Hessian is a symmetric matrix.
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12.28 Degree

As in Section 12.18 above, the polynomials of two variables ai(x, y) can be
written as

ai(x, y) =
∑

j

∑
k

ai,j,kxkyj ,

where ai,j,k are some scalars. Using this formulation, the original polynomial
of three variables can be written as

p(x, y, z) =
∑

i

∑
j

∑
k

ai,j,kxkyjzi.

The degree of p is the maximal sum i+j+k for which a monomial of the form
ai,j,kxkyjzi (with ai,j,k 6= 0) appears in p. From Chapter 10, Section 10.15,
it follows that the total number of monomials of the form ai,j,kxkyjzi (with
either ai,j,k 6= 0 or ai,j,k = 0) that can appear in a polynomial of degree n is(

n + 3
3

)
=

(n + 3)!
n! · 3!

.

12.29 Degrees of Freedom

In order to specify a polynomial p(x, y, z) of degree n, one can specify its
coefficients ai,j,k (i+j+k ≤ n). For n = 5, for example, this requires specifying(

5 + 3
3

)
= 56

coefficients of the form ai,j,k (i + j + k ≤ 5).
This explicit approach, however, is not the only way to specify the polyno-

mial p(x, y, z) of degree 5. One can equally well characterize p more implicitly
by giving any 56 independent pieces of information about it, such as its val-
ues at 56 independent points in the 3-d Cartesian space. Better yet, one can
specify p by specifying not only its values but also the values of its partial
derivatives at a smaller number of points. A sensible approach, for example,
would be to specify the partial derivatives of p up to (and including) order
2 at the four corners of the unit tetrahedron. Since the total number of such
partial derivatives is (

2 + 3
3

)
= 10,
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this makes a total of 40 independent pieces of information that have been
specified about p. More precisely, the values of these 10 partial derivatives of
p should be specified to be the parameters

p(i) (0 ≤ i < 10)

at the origin (0, 0, 0), the parameters

p(i) (10 ≤ i < 20)

at the corner (1, 0, 0), the parameters

p(i) (20 ≤ i < 30)

at the corner (0, 1, 0), and the parameters

p(i) (30 ≤ i < 40)

at the corner (0, 0, 1).
So far, we have specified a total number of 40 independent pieces of in-

formation (or degrees of freedom) about p. In order to specify p uniquely,
however, we must specify 16 more degrees of freedom. For this purpose, it
makes sense to specify two normal derivatives at the midpoint of each of the
six edges of the unit tetrahedron (which makes 12 more degrees of freedom).
These degrees of freedom are given by the parameters p(40), p(41), . . . , p(51).

This makes a total of 52 degrees of freedom that have been specified so far.
The four final degrees of freedom are the normal derivative at the midpoint of
each of the four sides of the tetrahedron. These degrees of freedom are given
in the parameters p(52), p(53), p(54), and p(55). This makes a total of 56 degrees
of freedom, as required.

Thus, in order to specify p uniquely, it is sufficient to specify the above pa-
rameters p(0), p(1), . . . , p(55). Below we use this method to specify some special
and important polynomials, called the basis functions.

12.30 Basis Functions in the Unit Tetrahedron

A basis function in the unit tetrahedron T in Figure 12.4 is a polynomial
pi(x, y, z) (0 ≤ i < 56) that is obtained by specifying the ith parameter
above to be 1, whereas all the other parameters vanish. More precisely, the 56
parameters (or degrees of freedom) p

(0)
i , p

(1)
i , . . . , p

(55)
i required to specify the

polynomial pi(x, y, z) uniquely are given by

p
(j)
i ≡

{
1 if j = i
0 if j 6= i
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(0 ≤ j < 56). In fact, every polynomial p(x, y, z) of degree at most 5 can be
written uniquely as the sum

p(x, y, z) =
55∑

i=0

p(i)pi(x, y, z).

Indeed, both the left-hand side and the right-hand side of this equation
are polynomials of degree at most 5 with the same 56 degrees of freedom
p(0), p(1), . . . , p(55).

12.31 Computing the Basis Functions

The triplets of the form (i, j, k) used to index the coefficients ai,j,k of a
polynomial of degree 5 form a discrete tetrahedron:

T (5) ≡ {(i, j, k) | 0 ≤ i, j, k, i + j + k ≤ 5} .

Let us order these triplets in the lexicographic order, that is (i, j, k) is prior
to (l, m, n) if either (a) i < l or (b) i = l and j < m or (c) i = l and j = m
and k < n. Let us use the index 0 ≤ ĵi,j,k < 56 to index these triplets in this
order. Using this index, we can form the 56-dimensional vector of coefficients
x:

xĵi,j,k
≡ ai,j,k, (i, j, k) ∈ T (5).

The same can be done for polynomials of degree 2. In this case, the index
0 ≤ îl,m,n < 10 can be used to index the corresponding triplets of the form
(l,m, n) in the discrete tetrahedron

T (2) = {(l,m, n) | 0 ≤ l,m, n, l + m + n ≤ 2} .

To compute a basis function pq for some given integer 0 ≤ q < 56, we need
to specify its coefficients ai,j,k, or the components of x. Unfortunately, these
coefficients are rarely available explicitly. In order to find them, we must use
every data we may have about pq, including its available degrees of freedom.
In a more formal language, we must solve a linear system of equations, in
which x is the vector of unknowns:

Bx = I(q),

where I(q) is the qth column of the identity matrix of order 56, and B is the
56× 56 matrix defined by the relations

p(i)
q =

55∑
j=0

Bi,jxj =
{

1 if i = q
0 if i 6= q,
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0 ≤ i < 56.
The above formula tells us how the elements Bi,j should be defined. Indeed,

the ith parameter p
(i)
q is obtained from a partial derivative of pq at one of the

corners (or the edge midpoints, or the side midpoints) of the unit tetrahedron.
Because the partial derivatives are linear operations, they are actually applied
to each monomial in pq, evaluated at the relevant point (either a corner or an
edge midpoint or a side midpoint of the unit tetrahedron), multiplied by the
corresponding (unknown) coefficient (stored in xj), and summed up. Thus,
an element in B must be obtained by a particular partial derivative applied
to a particular monomial and then evaluated at a particular point in the unit
tetrahedron.

More precisely, for 0 ≤ j < 56, let us substitute j ← ĵi,j,k, where
(i, j, k) ∈ T (5). Furthermore, for the first 10 equations in the above linear
system (0 ≤ i < 10), let us substitute i← îl,m,n, where (l,m, n) ∈ T (2). Then

the parameter p
(̂il,m,n)
q is the value of the (n, m, l)th partial derivative of pq

at the origin (0, 0, 0). Thus, Bîl,m,n,ĵi,j,k
must be the value of the (n, m, l)th

partial derivative of the monomial xkyjzi at the origin:

Bîl,m,n,ĵi,j,k
≡
{

i!j!k! if i = l and j = m and k = n
0 otherwise.

Furthermore, in the next 10 equations in the above linear system, the par-
tial derivatives are evaluated at the corner (1, 0, 0) rather than at the origin.

Therefore, the parameter p
(10+îl,m,n)
q is the (n, m, l)th partial derivative of pq

at (1, 0, 0), so B10+îl,m,n,ĵi,j,k
must be defined as the (n, m, l)th partial deriva-

tive of the monomial xkyjzi at (1, 0, 0):

B10+îl,m,n,ĵi,j,k
≡
{

i!j! k!
(k−n)! if i = l and j = m and k ≥ n

0 otherwise.

Similarly, in the next 10 equations, the partial derivatives are evaluated at
(0, 1, 0), yielding the definitions

B20+îl,m,n,ĵi,j,k
≡
{

i!k! j!
(j−m)! if i = l and j ≥ m and k = n

0 otherwise.

Similarly, in the next 10 equations, the partial derivatives are evaluated at
(0, 0, 1), yielding the definitions

B30+îl,m,n,ĵi,j,k
≡
{

j!k! i!
(i−l)! if i ≥ l and j = m and k = n

0 otherwise.

This completes the definition of the first 40 rows in B, indexed from 0 to 39.
The next two equations are obtained from the two normal derivatives (the

y- and z-partial derivatives) at the edge midpoint (1/2, 0, 0) (see Section 12.24
above):
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B40,ĵi,j,k
≡
{

2−k if j = 1 and i = 0
0 otherwise

B41,ĵi,j,k
≡
{

2−k if j = 0 and i = 1
0 otherwise.

Similarly, the next two equations are obtained from the two normal derivatives
(the x- and z-partial derivatives) at the edge midpoint (0, 1/2, 0):

B42,ĵi,j,k
≡
{

2−j if k = 1 and i = 0
0 otherwise

B43,ĵi,j,k
≡
{

2−j if k = 0 and i = 1
0 otherwise.

Similarly, the next two equations are obtained from the two normal derivatives
(the x- and y-partial derivatives) at the edge midpoint (0, 0, 1/2):

B44,ĵi,j,k
≡
{

2−i if k = 1 and j = 0
0 otherwise

B45,ĵi,j,k
≡
{

2−i if k = 0 and j = 1
0 otherwise.

Furthermore, the next two equations are obtained from the two normal
derivatives (the z-partial derivative and the sum of the x- and y-partial deriva-
tives, divided by

√
2) at the edge midpoint (1/2, 1/2, 0) (see Section 12.24):

B46,ĵi,j,k
≡
{

2−j−k if i = 1
0 otherwise

B47,ĵi,j,k
≡
{

(j + k)2−j−k+1/
√

2 if i = 0
0 otherwise.

Similarly, the next two equations are obtained from the two normal deriva-
tives (the y-partial derivative and the sum of the x- and z-partial derivatives,
divided by

√
2) at the edge midpoint (1/2, 0, 1/2):

B48,ĵi,j,k
≡
{

2−i−k if j = 1
0 otherwise

B49,ĵi,j,k
≡
{

(i + k)2−i−k+1/
√

2 if j = 0
0 otherwise.

Similarly, the next two equations are obtained from the two normal deriva-
tives (the x-partial derivative and the sum of the y- and z-partial derivatives,
divided by

√
2) at the edge midpoint (0, 1/2, 1/2):

B50,ĵi,j,k
≡
{

2−i−j if k = 1
0 otherwise

B51,ĵi,j,k
≡
{

(i + j)2−i−j+1/
√

2 if k = 0
0 otherwise.
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The final four equations are obtained from evaluating the normal deriva-
tives at the side midpoints. The next equation is obtained from the normal
derivative (the z-partial derivative) at the side midpoint (1/3, 1/3, 0):

B52,ĵi,j,k
≡
{

3−j−k if i = 1
0 otherwise.

Similarly, the next equation is obtained from the normal derivative (the y-
partial derivative) at the side midpoint (1/3, 0, 1/3):

B53,ĵi,j,k
≡
{

3−i−k if j = 1
0 otherwise.

Similarly, the next equation is obtained from the normal derivative (the x-
partial derivative) at the side midpoint (0, 1/3, 1/3):

B54,ĵi,j,k
≡
{

3−i−j if k = 1
0 otherwise.

The final equation is obtained from the normal derivative (the sum of
the x-, y-, and z-partial derivatives, divided by

√
3) at the side midpoint

(1/3, 1/3, 1/3) (see Section 12.24):

B55,ĵi,j,k
≡ (i + j + k)3−i−j−k+1/

√
3.

This completes the definition of the matrix B.
In order to solve the above linear system for x, one can use three possible

approaches. The direct approach is to compute the inverse matrix B−1 ex-
plicitly, and obtain x as the qth column in it. A more indirect approach is to
solve the above linear system iteratively by a Krylov-subspace method, such
as GMRES [23]. Finally, one may also multiply the above linear system by
the transpose matrix Bt to obtain the so-called normal equations

BtBx = Bt · I(q),

and apply to them the preconditioned-conjugate-gradient iterative method
[22].

12.32 Composite Functions in a General Tetrahedron

Consider now a general tetrahedron t in the 3-d Cartesian space, with ver-
tices (corners) denoted by k, l,m,n ∈ R3. In this case, we write

t = (k, l,m,n),
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where the order of vertices in this notation is determined arbitrarily in ad-
vance.

Let

|k| = 0
|l| = 10
|m| = 20
|n| = 30

denote the indices of the corners of t in the list of the 56 degrees of freedom
in t, to be specified below. In fact, each basis function in t is going to be a
polynomial of three variables with 55 degrees of freedom (partial derivatives
at the corners, edge midpoints, or side midpoints of t) that are equal to 0,
and only one degree of freedom that is equal to 1.

Let St be the 3× 3 matrix whose columns are the 3-d vectors leading from
k to the three other corners of t:

St ≡ (l− k | m− k | n− k) .

Let us use the matrix St to define a mapping from T onto t:

Et

x
y
z

 ≡ k + St

x
y
z

 .

Indeed, the corners of the unit tetrahedron T are clearly mapped by Et onto
the corresponding corners of t:

Et

0
0
0

 = k

Et

1
0
0

 = l

Et

0
1
0

 = m

Et

0
0
1

 = n.

Clearly, the inverse mapping maps t back onto T :

E−1
t

x
y
z

 = S−1
t

x
y
z

− k

 .
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The basis functions in Section 12.31 can now be composed with E−1
t to form

the corresponding functions

ri,t ≡ pi ◦ E−1
t

(0 ≤ i < 56), which are defined in t rather than in T .
Unfortunately, these functions are not basis functions, as they may have

more than one nonzero partial derivative in t. Still, they may be used to form
the desired basis functions in t as follows.

12.33 The Chain Rule

The so-called “chain rule” tells us how to compute partial derivatives of
the composition of two functions. In our case, it gives the gradient of the
composed function ri,t in terms of the gradient of its first component, pi:

∇ri,t = ∇(pi ◦ E−1
t ) = S−t

t ((∇pi) ◦ E−1
t )

(where S−t
t is the transpose of the inverse of St). Furthermore, by taking the

transpose of both sides of the above equation, we have

∇tri,t == ((∇tpi) ◦ E−1
t )S−1

t .

As a result, if the gradient of pi vanishes at some point (x, y, z) ∈ T , then
the gradient of ri,t vanishes at Et(x, y, z) ∈ t. In particular, if the gradient
of pi vanishes at some corner of T , then the gradient of ri,t vanishes at the
corresponding corner of t.

12.34 Directional Derivative of a Composite Function

The above formulas can be used to write the directional derivative of ri,t in
terms of that of pi. To see this, let n ∈ R3 be a unit vector. Define also the
unit vector

w ≡ Stn
‖Stn‖2

.

With this notation, the directional derivative of ri,t in direction w is
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wt∇ri,t =
1

‖Stn‖2
(Stn)t∇ri,t

=
1

‖Stn‖2
ntSt

tS
−t
t ((∇pi) ◦ E−1

t )

=
1

‖Stn‖2
nt((∇pi) ◦ E−1

t ).

In other words, the directional derivative of ri,t in direction w at some point
(x, y, z) ∈ t is proportional to the directional derivative of pi in direction n at
the corresponding point E−1

t (x, y, z) ∈ T .

12.35 The Hessian of a Composite Function

The formula at the end of Section 12.33 that gives ∇tri,t in terms of ∇tpi

is also useful to have the Hessian of ri,t. in terms of that of pi. Indeed, by
applying ∇ to both sides of the this formula, we have

∇∇tri,t = ∇((∇tpi) ◦ E−1
t )S−1

t = S−t
t ((∇∇tpi) ◦ E−1

t )S−1
t .

12.36 Basis Functions in a General Tetrahedron

As a result of the above formula, if the Hessian of pi vanishes at some point
(x, y, z) ∈ T , then the Hessian of ri,t vanishes at Et(x, y, z) ∈ t. In particular,
if the Hessian of pi vanishes at some corner of T , then the Hessian of ri,t

vanishes at the corresponding corner of t. As a consequence, we can define
four basis functions in t:

Ri,t ≡ ri,t, i = 0, 10, 20, 3.

Indeed, from the above, each of these functions has the value 1 at one of
the corners of t, whereas its partial derivatives vanish at the corners, edge
midpoints, and side midpoints of t. For example, since

|k| = 0
|l| = 10
|m| = 20
|n| = 30

are the indices of the corners of t in the list of 56 degrees of freedom in it, the
partial derivatives of R0,t (of order 0, 1, or 2) vanish at k, l, m, and n (as
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well as at the edge and side midpoints), except for the 0th partial derivative
at k, for which

R0,t(k) = r0,t(k) = p0(E−1
t (k)) = p0(0, 0, 0) = 1.

Furthermore, let us define basis functions in t with only one first partial
derivative that does not vanish at only one corner of t. For this purpose, let i
be some corner of t, and define the three basis function in t byR|i|+î0,0,1,t

R|i|+î0,1,0,t

R|i|+î1,0,0,t

 ≡ St

 r|i|+î0,0,1,t

r|i|+î0,1,0,t

r|i|+î1,0,0,t

 .

Indeed, by applying ∇t to both sides of the above equation, we obtain the
3× 3 matrix equation

∇t

R|i|+î0,0,1,t

R|i|+î0,1,0,t

R|i|+î1,0,0,t

 = St∇t

 r|i|+î0,0,1,t

r|i|+î0,1,0,t

r|i|+î1,0,0,t

 . = St


∇

tp|i|+î0,0,1

∇tp|i|+î0,1,0

∇tp|i|+î1,0,0

 ◦ E−1
t

S−1
t .

Clearly, at every corner of t that is different from i the middle term in the
above triple product is just the 3×3 zero matrix, which implies that the three
basis functions have zero partial derivatives there, as required. At the corner
i, on the other hand, the middle term in the above triple product is the 3× 3
identity matrix I, which implies that

∇t

R|i|+î0,0,1,t

R|i|+î0,1,0,t

R|i|+î1,0,0,t

 = StS
−1
t = I,

as required.
Moreover, let us now define the six basis functions in t corresponding to the

second partial derivatives at the corners of t. For this, however, we need some
new notations.

Let A be a 3×3 symmetric matrix. Thanks to the symmetry property, A is
well defined in terms of six of its elements, and can therefore be represented
uniquely as the six-dimensional column vector

A ≡


a1,1

a2,1

a2,2

a3,1

a3,2

a3,3

 .

Consider the linear mapping
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A→ StASt
t ,

which maps A to the 3 × 3 symmetric matrix StASt
t . More specifically, for

every two indices 1 ≤ l,m ≤ 3, we have

(
StASt

t

)
l,m

=
3∑

j=1

=
3∑

k=1

(St)l,jaj,k(St
t)k,m =

3∑
j,k=1

(St)l,j(St)m,kaj,k.

In this formulation, A can be viewed as a nine-dimensional vector, with
the 2-d vector index (j, k) rather than the usual scalar index. Furthermore,
(St)l,j(St)m,k can be viewed as a matrix of order 9, with the 2-d vector indices
(l,m) (row index) and (j, k) (column index) rather than the usual scalar in-
dices. A matrix with this kind of indexing is also called a tensor. In our case,
the tensor St ⊗ St is defined by

(St ⊗ St)(l,m),(j,k) ≡ (St)l, j(St)m, k.

Clearly, the transpose tensor is obtained by interchanging the roles of the
row index (l,m) and the column index (j, k). Thus, the ((l,m), (j, k))th ele-
ment in the transpose tensor is

(St)j,l(St)k,m = (St
t)l,j(St

t)m,k.

As a result, the transpose tensor is associated with the transpose mapping

A→ St
tASt.

Furthermore, the inverse of the transpose mapping is clearly

A→ S−t
t AS−1

t .

Thanks to the symmetry of A and the linearity of the original mapping
A → StASt

t , it can also be represented more economically as a mapping of
six-dimensional vectors: 

a1,1

a2,1

a2,2

a3,1

a3,2

a3,3

→ Z


a1,1

a2,1

a2,2

a3,1

a3,2

a3,3

 ,

where Z ≡ Z(St) is a suitable 6 × 6 matrix. Similarly, the inverse transpose
mapping

A→ S−t
t AS−1

t

is equivalent to the mapping of six-dimensional column vectors
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a1,1

a2,1

a2,2

a3,1

a3,2

a3,3

→ Z−t


a1,1

a2,1

a2,2

a3,1

a3,2

a3,3

 ,

which is also equivalent to the mapping of six-dimensional row vectors

(a1,1, a2,1, a2,2, a3,1, a3,2, a3,3)→ (a1,1, a2,1, a2,2, a3,1, a3,2, a3,3)Z−1.

Now, for any function v(x, y, z), ∇∇tv is also a 3 × 3 symmetric matrix.
Therefore, ∇∇tv can also be represented uniquely as the six-dimensional row
vector

(vxx, vxy, vyy, vxz, vyz, vzz).

We are now ready to define the basis functions in t whose partial derivatives
vanish at the corners and edge and side midpoints of t, except for only one
second partial derivative at one corner i, which takes the value 1. In fact, the
six basis functions are defined compactly by

R|i|+î0,0,2,t R|i|+î0,1,1,t R|i|+î1,0,1,t

R|i|+î0,1,1,t R|i|+î0,2,0,t R|i|+î1,1,0,t

R|i|+î1,0,1,t R|i|+î1,1,0,t R|i|+î2,0,0,t

 ≡ St

 r|i|+î0,0,2,t r|i|+î0,1,1,t r|i|+î1,0,1,t

r|i|+î0,1,1,t r|i|+î0,2,0,t r|i|+î1,1,0,t

r|i|+î1,0,1,t r|i|+î1,1,0,t r|i|+î2,0,0,t

St
t ,

or, equivalently, by 

R|i|+î0,0,2,t

R|i|+î0,1,1,t

R|i|+î0,2,0,t

R|i|+î1,0,1,t

R|i|+î1,1,0,t

R|i|+î2,0,0,t


≡ Z



r|i|+î0,0,2,t

r|i|+î0,1,1,t

r|i|+î0,2,0,t

r|i|+î1,0,1,t

r|i|+î1,1,0,t

r|i|+î2,0,0,t


.

Indeed, the Hessian operator can be applied separately to each of these six
functions, to map it to the six-dimensional row vector of its second partial
derivatives and form the following 6× 6 matrix:
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∇∇t



R|i|+î0,0,2,t

R|i|+î0,1,1,t

R|i|+î0,2,0,t

R|i|+î1,0,1,t

R|i|+î1,1,0,t

R|i|+î2,0,0,t


= Z



∇∇tr|i|+î0,0,2,t

∇∇tr|i|+î0,1,1,t

∇∇tr|i|+î0,2,0,t

∇∇tr|i|+î1,0,1,t

∇∇tr|i|+î1,1,0,t

∇∇tr|i|+î2,0,0,t


.

= Z



(∇∇tp|i|+î0,0,2
) ◦ E−1

t

(∇∇tp|i|+î0,1,1
) ◦ E−1

t

(∇∇tp|i|+î0,2,0
) ◦ E−1

t

(∇∇tp|i|+î1,0,1
) ◦ E−1

t

(∇∇tp|i|+î1,1,0
) ◦ E−1

t

(∇∇tp|i|+î2,0,0
) ◦ E−1

t


Z−1.

Clearly, at i, the middle term in the above triple product is just the 6 × 6
identity matrix I, leading to

∇∇t



R|i|+î0,0,2,t(i)
R|i|+î0,1,1,t(i)
R|i|+î0,2,0,t(i)
R|i|+î1,0,1,t(i)
R|i|+î1,1,0,t(i)
R|i|+î2,0,0,t(i)


= ZIZ−1 = I,

as required. It is easy to see that the partial derivatives of these functions
vanish at every corner other than i, and also at every edge and side midpoint
of t, as required, which guarantees that they are indeed basis functions in t.

Finally, let us define the remaining basis functions Ri,t (40 ≤ i < 56)
in t. Consider, for example, the two degrees of freedom 40 ≤ i, i + 1 < 56
corresponding to the normal derivatives at the edge midpoint w ∈ e, where e
is some edge in the unit tetrahedron T . Let us denote these normal directions
by the 3-d unit vectors n(1) and n(2). Let n(3) be the unit vector that is tangent
to e. As follows from Section 12.38 below, both basis functions pi and pi+1

must vanish in e, so their tangential derivative along e (and, in particular, at
its midpoint) must vanish as well:

∇tpi(w)n(3) = ∇tpi+1(w)n(3) = 0.

Define the 3× 3 matrix formed by these three unit column vectors:

Ne ≡
(
n(1) | n(2) | n(3)

)
.

Although n(1) and n(2) are the directions specified in T , they are not nec-
essarily the directions we want to be used in the derivatives in t. In fact, in
what follows we choose more proper direction vectors in t.
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Suppose that, at the edge midpoint Et(w) ∈ Et(e) ⊂ t, we want to use the
directions specified by the columns of the 3 × 2 matrix StNeYt,e, where Yt,e

is a 3× 2 matrix chosen arbitrarily in advance. The only condition that must
be satisfied by StNeYt,e is that its columns span a plane that is not parallel
to the edge Et(e), that is, it is crossed by the line that contains Et(e). For
example, if Yt,e contains the two first columns in (StNe)−1, then

StNeYt,e =

1 0
0 1
0 0

 ,

so the relevant basis functions defined below in t correspond to the x- and
y-partial derivatives at Et(w) ∈ t. This is our default choice.

The above default choice is possible so long as Et(e) is not parallel to the
x-y plane. If it is, then one may still choose a matrix Yt,e that contains the
first and third (or the second and third) columns in (StNe)−1. In this case,

StNeYt,e =

1 0
0 0
0 1

 ,

so the relevant basis functions defined below in t correspond to the x- and
z-partial derivatives at Et(w) ∈ t.

Fortunately, the condition that Et(e) is not parallel to the x-y plane is a
geometric condition. Therefore, it can be checked not only from t but also
from any other tetrahedron that uses Et(e) as an edge. Thus, the desirable
basis function whose x- (or y-) partial derivative is 1 at Et(w) can be defined
not only in t but also in every other tetrahedron that shares Et(e) as an
edge. Furthermore, the individual basis functions defined in this way in the
individual tetrahedra that share Et(e) as an edge can be combined to form
a global piecewise-polynomial basis function in the entire mesh, whose x- (or
y-) partial derivative at Et(w) is 1, whereas all its other degrees of freedom
in each tetrahedron vanish. As we’ll see below, this defines a continuous basis
function in the entire mesh, with a continuous gradient across the edges.

Returning to our individual tetrahedron t, let Ŷt,e be the 2× 2 matrix that
contains the first two rows in Yt,e. In other words,

Yt,e =
(

Ŷt,e

β γ

)
,

where β and γ are some scalars.
Let us show that Ŷt,e is nonsingular (invertible). Indeed, let e(1) and e(2)

denote the endpoints of e, so

w =
e(1) + e(2)

2
.
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Then we have

S−1
t

(
Et(e(2))− Et(e(1))

)
= S−1

t

(
St(e(2))− St(e(1))

)
= e(2) − e(1) = αn(3)

for some nonzero scalar α. Thanks to the fact that n(1), n(2), and n(3) are
orthonormal, we have

Nt
eS

−1
t

(
Et(e(2))− Et(e(1))

)
= αNt

en
(3) =

 0
0
α

 .

Furthermore, thanks to the fact that Ne is orthogonal, we also have

(StNe)
−1 = N−1

e S−1
t = Nt

eS
−1
t .

Using also our default choice, we have

(StNe)
−1

Et(e(2))− Et(e(1)) |
1
0
0
|

0
1
0

 =

 0
0
α
| Yt,e

 =

 0
0
α
| Ŷt,e

β γ

 .

Using also our default assumption that Et(e) is not parallel to the x-y plane,
or that (

Et(e(2))− Et(e(1))
)

3
6= 0,

we have that the above left-hand side is a triple product of three nonsingular
matrices. As a consequence, the matrix in the right-hand side is nonsingular
as well, which implies that Ŷt,e is nonsingular as well, as asserted.

Using the above result, we can now define the basis functions in t by(
Ri,t

Ri+1,t

)
≡ Ŷ −1

t,e

(
ri,t

ri+1,t

)
.

Note that, in our default choice for Yt,e, Ŷ −1
t,e is available as the 2×2 upper-left

block submatrix in StNe.
Let us verify that these are indeed basis functions in t in the sense that

that they take the value 1 only for one of the directional derivatives at Et(w)
(in the direction specified by one of the columns in StNeYt,e) and zero for the
other one:(

∇tRi,t

∇tRi+1,t

)
StNeYt,e = Ŷ −1

t,e

(
∇tri,t

∇tri+1,t

)
StNeYt,e

= Ŷ −1
t,e

(
(∇tpi) ◦ E−1

t

(∇tpi+1) ◦ E−1
t

)
S−1

t StNeYt,e

= Ŷ −1
t,e

(
(∇tpi) ◦ E−1

t

(∇tpi+1) ◦ E−1
t

)
NeYt,e.
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At the edge midpoint Et(w) ∈ Et(e) ⊂ t, the middle term in this triple
product takes the value(

(∇tpi) ◦ E−1
t (Etw)

(∇tpi+1) ◦ E−1
t (Etw)

)
Ne =

(
∇tpi(w)
∇tpi+1(w)

)
Ne =

(
1 0 0
0 1 0

)
,

so the entire triple product is just the 2× 2 identity matrix, as required.
The basis function associated with the midpoint of the side Et(s) ⊂ t (where

s is a side of T ) is defined in a similar way, except that here n(1) is normal
to s, n(2) and n(3) are orthonormal vectors that are tangent (parallel) to s,
Ns is the orthogonal matrix whose columns are n(1), n(2), and n(3), Yt,s is a
3 × 1 matrix (a 3-d column vector) rather than a 3 × 2 matrix, and Ŷt,s is a
1 × 1 matrix (a mere scalar) rather than a 2 × 2 matrix. [Here Yt,s must be
chosen in such a way that the column vector StNsYt,s is not parallel to Et(s);
for example, if Et(s) is not parallel to the x-axis, then Yt,s could be the first
column in (StNs)−1.] This is our default choice, provided that Et(s) is not
parallel to the x-axis, or that(

Stn
(2) × Stn

(3)
)

1
= det

(((
Stn

(2)
)
2

(
Stn

(3)
)
2(

Stn
(2)
)
3

(
Stn

(3)
)
3

))
6= 0.

(As above, this condition guarantees that Ŷt,s 6= 0.) This completes the defi-
nition of the basis functions in t.

12.37 Continuity

Let t1 and t2 be two neighbor tetrahedra that share the joint side s. (With-
out loss of generality, assume that s is not parallel to the x-axis, so its edges
are not parallel to the x-axis as well.) Furthermore, let u1 be a basis function
in t1 and u2 a basis function in t2. Assume that u1 and u2 share the same
degrees of freedom in s, that is, they have zero degrees of freedom in s, except
at most one degree of freedom, say

(u1)x(j) = (u2)x(j) = 1,

where j is either a corner or a midpoint or an edge midpoint of s.
Thus, both u1 and u2 agree on every partial derivative (of order at most 2)

in every corner of s. Furthermore, they also agree on the normal derivatives
at the edge midpoints of s. Below we’ll use these properties to show that they
must agree on the entire side s.

Let us view u1 and u2 as functions of two variables defined in s only. As
such, these functions agree on six tangential derivatives in s (of orders 0, 1,
and 2) at each corner of s. Furthermore, they also agree on some tangential
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derivative in s at each edge midpoint of s (in a direction that is not parallel
to this edge). Thus, the total number of degrees of freedom for which both of
these functions agree in s is

3 · 6 + 3 = 21.

Fortunately, this is also the number of monomials in a polynomial of two
variables of degree five: (

5 + 2
2

)
= 21.

Therefore, a polynomial of two variables of degree five is determined uniquely
by 21 degrees of freedom. Since both u1 and u2 are polynomials of degree five
in s that share the same 21 degrees of freedom in s, they must be identical in
the entire side s.

The above result can be used to define the function

u(x, y, z) ≡
{

u1(x, y, z) if (x, y, z) ∈ t1
u2(x, y, z) if (x, y, z) ∈ t2.

This function is continuous in the union of tetrahedra

t1 ∪ t2.

Furthermore, it is a polynomial of degree five in t1 and also a (different)
polynomial of degree five in t2. Such functions will be used later in the book
to define continuous basis functions in the entire mesh of tetrahedra.

12.38 Continuity of Gradient

Assume now that t1 and t2 share an edge e rather than a side. In this case,
u1 and u2 are basis functions in t1 and t2 (respectively) that share the same
degrees of freedom in e: they have the same tangential derivatives along e
(up to and including order 2) at the endpoints of e, and also have the same
directional derivatives at the midpoint of e in some directions that are not
parallel to e. More precisely, they have zero degrees of freedom at these points,
except at most one degree of freedom, say

(u1)x(j) = (u2)x(j) = 1,

where j is either an endpoint or a midpoint of e (assuming that e is not parallel
to the x-axis).

Let us view u1 and u2 as polynomials of one variable in e. As such, they
share six degrees of freedom in e: the tangential derivatives along e (of order
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0, 1, and 2) at the endpoints of e. Thanks to the fact that a polynomial of
one variable of degree five has six monomials in it, it is determined uniquely
by six degrees of freedom. As a result, both u1 and u2 must be identical in
the entire edge e.

Clearly, because u1 and u2 are identical in e, they also have the same tan-
gential derivative along it. Below we’ll see that they also have the same normal
derivatives in e, so that in summary they have the same gradient in e.

Indeed, consider a unit vector n that is not parallel to e. The directional
derivatives ∇tu1 ·n and ∇tu2 ·n can be viewed as polynomials of one variable
of degree four in e. As such, they must be identical in the entire edge e, since
they agree on five degrees of freedom in it: the tangential derivatives along e
(of order 0 and 1) at the endpoints, and also the value of function itself at the
midpoint.

The above results can be used to define the function

u(x, y, z) ≡
{

u1(x, y, z) if (x, y, z) ∈ t1
u2(x, y, z) if (x, y, z) ∈ t2.

This function is not only continuous in the union of tetrahedra

t1 ∪ t2,

but also has a continuous gradient across the joint edge e.

12.39 Integral over a General Tetrahedron

The linear mapping Et : T → t can also be used in a formula that helps
computing the integral of a given function F (x, y, z) over the general tetrahe-
dron t:∫ ∫ ∫

t

F (x, y, z)dxdydz = |det(St)|
∫ ∫ ∫

T

F ◦ Et(x, y, z)dxdydz.

Here the original function F is defined in t, so the composite function F ◦Et is
well defined (and therefore can indeed be integrated) in the unit tetrahedron
T . For example, if F is a product of two functions

F (x, y, z) = f(x, y, z)g(x, y, z),

then the above formula takes the form∫ ∫ ∫
t

fgdxdydz = |det(St)|
∫ ∫ ∫

T

(f ◦ Et)(g ◦ Et)dxdydz.

Furthermore, the inner product of the gradients of f and g can be integrated
in t by

© 2009 by Taylor and Francis Group, LLC



12.40. EXERCISES 243∫ ∫ ∫
t

∇tf∇gdxdydz

= |det(St)|
∫ ∫ ∫

T

((∇tf) ◦ Et)((∇g) ◦ Et)dxdydz

= |det(St)|
∫ ∫ ∫

T

((∇t(f ◦ Et ◦ E−1
t )) ◦ Et)((∇(g ◦ Et ◦ E−1

t )) ◦ Et)dxdydz

= |det(St)|
∫ ∫ ∫

T

((∇t(f ◦ Et) ◦ E−1
t ) ◦ Et)S−1

t S−t
t ((∇(g ◦ Et) ◦ E−1

t ) ◦ Et)dxdydz

= |det(St)|
∫ ∫ ∫

T

∇t(f ◦ Et)S−1
t S−t

t ∇(g ◦ Et)dxdydz.

This formula will be most helpful in the applications later on in the book.

12.40 Exercises

1. Let u = (ui)0≤i≤n be an (n+1)-dimensional vector, and v = (vi)0≤i≤m be
an (m + 1)-dimensional vector. Complete both u and v into (n + m + 1)-
dimensional vectors by adding dummy zero components:

un+1 = un+2 = · · · = un+m = 0

and
vm+1 = vm+2 = · · · = vn+m = 0.

Define the convolution of u and v, denoted by u∗v, to be the (n+m+1)-
dimensional vector with the components

(u ∗ v)k =
k∑

i=0

uivk−i, 0 ≤ k ≤ n + m.

Show that
u ∗ v = v ∗ u.

2. Let p be the polynomial of degree n whose vector of coefficients is u:

p(x) =
n∑

i=0

uix
i.

Similarly, let q be the polynomial of degree m whose vector of coefficients
is v:

q(x) =
m∑

i=0

vix
i.

© 2009 by Taylor and Francis Group, LLC



244 CHAPTER 12. POLYNOMIALS

Show that the convolution vector u ∗ v is the vector of coefficients of the
product polynomial pq.

3. The infinite Taylor series of the exponent function exp(x) = ex is

exp(x) = 1 + x +
x2

2!
+

x3

3!
+

x4

4!
+ · · · =

∞∑
n=0

xn

n!

(see [7] [19]).
For moderate |x|, this series can be approximated by the Taylor poly-
nomial of degree k, obtained by truncating the above series after k + 1
terms:

exp(x) .=
k∑

n=0

xn

n!
.

Write a version of Horner’s algorithm to compute this polynomial effi-
ciently for a given x. The solution can be found in Chapter 14, Section
14.10.

4. The infinite Taylor series of the sine function sin(x) is

sin(x) = x− x3

3!
+

x5

5!
− x7

7!
+ · · · =

∞∑
n=0

(−1)n x2n+1

(2n + 1)!
.

For moderate |x|, this series can be approximated by the Taylor polyno-
mial of degree 2k +1, obtained by truncating the above series after k +1
terms:

sin(x) .=
k∑

n=0

(−1)n x2n+1

(2n + 1)!
.

Write a version of Horner’s algorithm to compute this polynomial effi-
ciently for a given x.

5. The infinite Taylor series of the cosine function cos(x) is

cos(x) = 1− x2

2!
+

x4

4!
− x6

6!
+ · · · =

∞∑
n=0

(−1)n x2n

(2n)!
.

For moderate |x|, this series can be approximated by the Taylor polyno-
mial of degree 2k, obtained by truncating the above series after k + 1
terms:

cos(x) .=
k∑

n=0

(−1)n x2n

(2n)!
.

Write a version of Horner’s algorithm to compute this polynomial effi-
ciently for a given x.

6. Use the above Taylor series to show that, for a given imaginary number
of the form ix (where i =

√
−1 and x is some real number),

exp(ix) = cos(x) + i · sin(x).
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7. Use the above Taylor series to show that the derivative of exp(x) is exp(x)
as well:

exp′(x) = exp(x).

8. Use the above Taylor series to show that the derivative of sin(x) is

sin′(x) = cos(x).

9. Use the above Taylor series to show that the derivative of cos(x) is

cos′(x) = − sin(x).

10. Conclude that
cos′′(x) = − cos(x).

11. Conclude also that
sin′′(x) = − sin(x).

12. Show that the Hessian is a 3× 3 symmetric matrix.
13. Show that the polynomials computed in Section 12.31 are indeed basis

functions in the unit tetrahedron T .
14. Show that, with the default choice at the end of Section 12.36,

Ŷt,s 6= 0.

15. In what case the default choice for Yt,s at the end of Section 12.36 cannot
be used? What choice should be used instead? Why is the above inequality
still valid in this case as well?

16. Use the above inequality to define the four basis functions associated with
the side midpoints in a general tetrahedron t.

17. Show that the Ri,t’s (0 ≤ i < 56) in Section 12.36 are indeed basis func-
tions in the general tetrahedron t.
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Introduction to C

So far, we have studied the theoretical background of some useful mathemat-
ical objects, including numbers, geometrical objects, and composite objects
such as sets and graphs. Still, in order to comprehend these objects and their
features fully, it is advisable to implement them on a computer.

In other words, the implementation of the mathematical objects on a com-
puter is useful not only to develop algorithms to solve practical problems but
also to gain a better understanding of the objects and their functions.

For this purpose, object-oriented programming languages such as C++ are
most suitable: they focus not only on the algorithms to solve specific problems,
but mainly on the objects themselves and their nature. This way, the process
of programming is better related to the original mathematical background. In
fact, the programming helps to get a better idea about the objects and why
and how they are designed. The objects can thus help not only to develop
algorithms and solve problems but also to comprehend mathematical ideas
and theories.

Before we can use C++ to define new mathematical objects, we must first
learn a more elementary programming language: C. Strictly speaking, C is
not really an object-oriented programming language. However, it serves as a
necessary framework, on top of which C++ is built.

The main advantage of C is in the opportunity to define new functions
that take some input numbers (or arguments) to produce the output number
(the returned value). The opportunity to use functions makes the computer
program (or code) much more modular: each function is responsible only for a
particular task, for which only a few instructions (or commands) are needed.
These commands may by themselves invoke (or call) other functions.

This modularity of the computer program is achieved by multilevel pro-
gramming: The original task to solve the original problem is accomplished
by calling the main function. (This can be viewed as the highest level of the
code.) For this purpose, the main function uses (or calls) some other functions
to accomplish the required subtasks and solve the required subproblems. This
can be viewed as the next lower level in the code, and so on, until the most
elementary functions are called in the lowest level to make simple calculations
without calling any further functions.

This multilevel programming is also helpful in debugging: finding errors in
the code. For this purpose, one only needs to find the source of the error in
the main function. This source may well be a command that calls some other
function. Then, one needs to study the call to this function (with the specific
input arguments used in it) to find the source of the error. The debugging
process may then continue recursively, until the exact source of the error is
found in the lowest level of the code.

Functions are also important to make the code elegant and easy to read.
Since each function is responsible only to a very specific task and contains only
the few commands required to accomplish it, it is easy to read and understand.
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Thus, other programmers may modify it if necessary and use it in their own
applications. Furthermore, even the writer of the original code would find it
much easier to remember what its purpose was when reading it again after a
time.

In other words, a code should be efficient not only in terms of minimum
computing resources, but also in terms of minimum human resources. Indeed,
even a code that requires little computer memory and runs fairly quickly on
it to solve the original problem may be useless if it is so complicated and
hard to read that nobody can modify it to solve other problems or even other
instances of the original problem. A well-written code, on the other hand,
may provide not only the main function required to solve the original problem
but also many other well-written functions that can be used in many other
applications.
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Chapter 13

Basics of Programming

In the first half of the book, we have studied some elementary mathematical
objects such as numbers, geometrical objects, sets, trees, and graphs. In this
half of the book, we are going to implement them on the computer. This is
done not only for solving practical problems, but also (and mainly) to get a
better idea about these abstract objects, and get a better insight about their
nature and features. For this purpose, it is particularly important that the
mathematical objects used in the code enjoy the same features, functions,
operations, and notations as in their original mathematical formulation. This
way, the program can use the same point of view used in the very definition
of the mathematical objects. Furthermore, the programming may even con-
tribute to a better understanding and feeling of the mathematical objects,
and help develop both theory and algorithms.

The most natural treatment of mathematical objects is possible in object-
oriented programming languages such as C++. First, however, we study the
C programming language, which is the basis for C++. Strictly speaking, C is
not an object-oriented programming language; still, integer and real numbers
are well implemented in it. Furthermore, the variables that can be defined in
it are easily referred to by their addresses. Moreover, C supports recursion
quite well, which enables a natural implementation of recursive functions.

13.1 The Computer and its Memory

The computer is a tool to solve computational problems that are too diffi-
cult or big to be solved by humans. Thanks to its large memory and strong
computational power, the computer has quite a good chance to solve problems
that are prohibitively large for the human mind. Still, even the most powerful
computer won’t be able to solve a computational problem in real (acceptable)
time, unless it has an efficient algorithm (method, or list of instructions) to
do this.

Furthermore, the algorithm must be implemented (written) in a language
understandable by the computer, namely, as a computer program or code.
The program must not only be efficient in the sense that it avoids redundant

251

© 2009 by Taylor and Francis Group, LLC



252 CHAPTER 13. BASICS OF PROGRAMMING

computations and data fetching from the memory, but also modular and ele-
gant to make it easy to debug from errors and also easy to improve and extend
to other applications whenever needed.

The computer consists of three basic elements: memory to store data, pro-
cessor to fetch data from the memory and use them to perform calculations,
and input/output (I/O) devices, such as keyboard, mouse, screen, and printer
to obtain data and return answers to the user.

The memory of the computer is based on semiconductors. Each semicon-
ductor can be set to two possible states, denoted by 0 and 1. Using the binary
representation, several semiconductors (or bits) can form together a natu-
ral number. Furthermore, by adding an extra bit to contain the sign of the
number, integer numbers can be implemented as well.

Moreover, for some fixed number n, say n = 4 or n = 8, two lists of bits
a1a2 · · · an and b1b2 · · · bn can form a fairly good approximation to any real
number in the form

±0.a1a2 · · · an · exp(±b1b2 · · · bn).

This is called the ”float” implementation of the real number. A slightly more
accurate approximation to the real number can be obtained by the ”double”
implementation, in which the above lists of bits are of length 2n rather than
n.

The memory of the computer is divided into two main parts: the primary
memory, a small device near the processor, which can be accessed easily and
quickly to perform immediate calculations, and the secondary memory, a big
and slow device, which lies farther away from the processor, and contains big
files, such as data files and programs. To perform calculations, the processor
must first fetch the required data from the secondary memory and place it
in the primary memory for further use. It is therefore advisable to exploit
data that already lie in the primary memory as much as possible, before they
are being returned to the secondary memory. This way, the processor may
avoid expensive (time consuming) data fetching from the secondary memory
whenever possible.

13.2 The Program or Code

In order to solve a computational problem, one must have an algorithm
(or method): a list of instructions (or commands) that should be executed to
produce the desired solution. Most often, the algorithm contains too many
instructions for a human being to perform; it must be therefore fed into the
computer which has a sufficiently large computational power.
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Unfortunately, the computer doesn’t understand English or any other nat-
ural (human) language. The algorithm must therefore be written in a formal,
unambiguous context-free language: a programming language.

Actually, the computer understands only a very explicit programming lan-
guage, which tells it very specifically what datum to fetch from the memory,
what arithmetic operation to perform on it, and where exactly to store the
result. This is called the low-level (or machine) language. Writing in such a
tedious manner would be quite impractical even for the best of programmers.
Fortunately, the programmer doesn’t have to write his/her program in the
machine language, but rather in a high-level programming language, such as
C.

The high-level programming language is much easier to use. It uses certain
words from English, called keywords or reserved words, to refer to common
programming tools such as logical conditions, loops, etc. Furthermore, it uses
certain characters to denote arithmetic and logical Boolean operations.

Once the high-level code is complete, it is translated to machine language
by the compiler. The compiler is a software that can be applied to a code

that has been written properly in a high-level programming language, to
produce the required machine-language code executable by the computer. For
example, the C compiler can be applied to a well-written C code to produce
the final machine code ready to be executed (run) on the computer.

The stage in which the compiler translates the high-level code written by
the programmer into the machine language executable by the computer is
called compilation time. The next stage, in which this translated program is
actually executed by the computer, is called run time. Variables (or memory
cells) that are unspecified in compilation time and are assigned meaningful
values only in run time are called dynamic variables.

13.3 The Code Segments in this Book

The code segments in this book are fully debugged and tested. They are
compiled with the standard GNU compiler. To use this compiler, the program
must be placed in a file called ”program.cxx”. On the UNIX operating system,
this compiler is then invoked by the commands

>> g++ program.cxx
>> a.out

The output of the program ”program.cxx” is then printed onto the screen.
When the program produces a lot of output, it can also be printed into a file
named ”Output” by the commands

>> g++ program.cxx
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>> a.out > Output

The output can then be read from the file by using, e.g., the ”vi” editor:

>> vi Output

One can also use the Windows operating system to compile and run C++
programs, but this requires some extra linking commands.

The GNU compiler used here is one of the most widely used C++ com-
pilers. Other compilers may require slight modifications due to some other
restrictions, requirements, or properties. In principle, the code is suitable for
other compilers as well.

Our convention is that words quoted from code are placed in quotation
marks. Double quotation marks are used for strings (e.g., ”const”), and single
quotation marks are used for single characters (e.g., ’c’). When the word
quoted from the code is a function name, it is often followed by ”()”, e.g.,
”main()”.

Each command in the code ends with the symbol ’;’. Commands that are
too long are broken into several consecutive code lines. These code lines are
interpreted as one continuous code line that lasts until the symbol ’;’ at the
end of the command.

The code segments are presented in nested-block style; that is, an inner
block is shifted farther to the right than the outer block that contains it. A
code line that belongs to a particular inner block is also shifted to the right
in the same way even when it is on its own to indicate that it is not just an
isolated code line but actually belongs to this block.

Let us now introduce the main elements and tools required to write a proper
C program.

13.4 Variables and Types

A variable is a small space in the computer memory to store a fixed amount
of data, which is then interpreted as the current value of the variable. As
discussed below, there may be several ways to interpret this data, depending
on the particular type of the variable.

Thus, the type of a variable is actually the way the data stored in it is
interpreted. For example, in a variable of type ”int” (integer), the first bit
determines the sign of the integer number (plus or minus), whereas the rest of
the bits are interpreted as the binary digits (0 or 1) that produce the binary
representation of the number.

In a variable of type ”float”, on the other hand, the first 4 (or 8) bits are
interpreted as the binary digits that form a binary fraction (the coefficient),
whereas the next 4 (or 8) bits form the binary representation of the exponent.
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The product of this coefficient and this exponent provide a good approxima-
tion to the required real number.

A yet better approximation to the real number under consideration can be
stored in a variable of type ”double”. Indeed, in such a variable, the 8 (or even
16) first bits are used to form the binary fraction (the coefficient), whereas the
next 8 (or 16) bits are used to form the exponent. These larger numbers of bits
provide a better precision in approximating real numbers on the computer.

The user of the variables, however, is completely unaware of the different
interpretations that may be given to the data stored in the bits. After all,
the user uses the variables only through the functions available in the pro-
gramming language. These functions form the interface by which the user can
access and use the variables. For example, the user can call the function ’/’
to divide two variables named i and j by writing i/j. As we’ll see below, the
function invoked by the compiler depends on the type of i and j: if they are
variables of type ”int”, then division with residual is invoked, so the returned
value (the result i/j) is an integer variable as well. If, on the other hand,
they are variables of type ”float” or ”double”, then division without residual
is invoked, returning the ”float” or ”double” variable i/j. In both cases, the
value i/j is returned by the division function in a variable with no name,
which exists only in the code line in which the call to the function is made,
and disappears right after the ’;’ symbol that marks the end of this code line.

Thus, the type of the variable becomes relevant to the user only when
interface functions, such as arithmetic and Boolean operators, are applied to
it. The types that are used often in C are ”int”, ”float”, ”double”, and ”char”
(character). The ”char” variable is stored as an unsigned integer number.
More precisely, it contains 8 bits to form a binary number between 0 and
255. Each number is interpreted as one of the keys on the keyboard, including
low-case letters, upper-case letters, digits, and special symbols. As we’ll see
below, variables of type ”char” have some extra functions to read them from
the screen (or from a file) and to print them onto the screen (or onto a file).

Variables of the above types can be viewed as objects, which can be ma-
nipulated by interface functions, such as arithmetic and logical operators and
read/write functions. Below we’ll see that in C++ the user can define his/her
own objects, with their special interface functions to manipulate and use them.
This is why C++ can be viewed as an object-oriented extension of C. Here,
however, we stick to the above four types available in C and to their interface
functions that are built in the C compiler.
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13.5 Defining Variables

A variable in C is defined (allocated memory) by writing the type of the
variable (say ”int”) followed by some name to refer to it. For example, the code
line ”int i;” allocates sufficient space in the computer memory for a variable of
type integer. The data placed in this space, that is, the value assigned to the
variable ’i’, can then be accessed through the name of the variable, namely,
’i’.

The command line (or instruction to the computer) ends with the symbol
’;’. A short command line such as ”int i;” can be written in one code line
in the program. Longer instructions, on the other hand, may occupy several
code lines. Still, the instruction ends only upon reaching the ’;’ symbol. For
example, one could equally well write ”int” in one code line and ”i;” in the
next one, with precisely the same meaning as before.

Similarly, one can define variables of types ”float”, ”double”, and ”char”:

int i;
float a;
double x;
char c;

When this code is executed, sufficient memory is allocated to store an integer
number, a real number, a double-precision real number, and a character.

The integer variable may take every integer value, may it be negative, pos-
itive, or zero. Both ”float” and ”double” variables may take every real value.
The character variable may take only nonnegative integer values between 0
and 255. Each of these potential values represents a character on the key-
board, such as a letter in English (a lowercase or a capital letter), a digit, an
arithmetic symbol, or any other special symbol on the keyboard.

13.6 Assignment

As discussed above, variables are referred to by their names (’i’, ’a’, ’x’,
and ’c’ in the above example). Here we show how these names can be used to
assign values to variables.

Upon definition, variables are assigned meaningless random values. More
meaningful values can be then assigned in assignment commands:

i = 0;
a = 0.;
x = 0.;
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c = ’A’;

Note that ’0’ stands for the integer number zero, whereas ”0.” stands for the
real number zero.

A command in C is also a function that not only carries out some operation
but also returns a value. In particular, the assignment operator ’=’ used above
not only assigns a value to a particular variable but also returns this value as
an output for future use. This feature can be used to write

x = a = i = 0;

This command is executed from right to left. First, the integer value 0 is
assigned to ’i’. This assignment also returns the assigned integer number 0,
which in turn is converted implicitly to the real number 0. and assigned to
the ”float” variable ’a’. This assignment also returns the (single-precision)
real number 0., which in turn is converted implicitly to the (double-precision)
real number 0. and assigned to the ”double” variable ’x’. Thus, the above
command is the same as

i = 0;
a = 0.;
x = 0.;

13.7 Initialization

The above approach, in which the variables initially contain meaningless
values before being assigned meaningful values, is somewhat inefficient. After
all, why not assign to them with meaningful values immediately upon defi-
nition? Fortunately, one can indeed avoid the above assignment operation by
defining and initializing the variables at the same time:

int i = 0;
float a = 0.;
double x = 0.;
char c = ’A’;

Here, the ’=’ symbol stands not for an assignment to an existing variable as
before but rather for an initialization of a new variable that is being defined
now.

Unlike assignment, initialization returns no value, so it is impossible to write

double x = double y = 0.; /* error! */
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Here, the characters ”/*” indicate the start of a comment, which ends with
the characters ”*/”. Such comments are skipped and ignored by the C com-
piler; their only purpose is to explain the code to the reader. (C++ has another
form of comment: the characters ”//” indicate the start of a comment line
ignored by the C++ compiler.)

Usually, comments are used to explain briefly what the code does. Here,
however, the comment is used to warn the reader that the code is wrong.
Indeed, because the initialization ”double y = 0.” on the right returns no
value, it cannot be used to initialize ’x’ on the left.

Initialization can also be used to define “read-only” types. Such types are
obtained by writing the reserved word ”const” before the type name:

const int i=1;

This way, ’i’ is of type constant integer. Therefore, it must be initialized upon
definition, and its value can no longer change throughout the block in which
it is defined.

13.8 Explicit Conversion

We have seen above that the value returned from a function can be con-
verted implicitly to a type that can be assigned to another variable. In this
section, we see that variables can also be converted not only implicitly but
also explicitly.

Conversion is a function that takes a variable as an argument and returns
its value, converted to the required type. In this process, the original variable
never changes: both its type and its value remain the same. Thus, the term
“conversion” is somewhat misleading: no real conversion takes place, and ev-
erything remains as before. Still, we keep using this term loosely, assuming
that everybody is aware of its inaccuracy.

Explicit conversion can be used as follows:

i = 5;
x = (double)i; /* or: x = double(i) */
i = (int)3.4; /* or: i = int(3.4) */

First, the integer variable ’i’ is assigned the integer value 5. Then, the prefix
”(double)” before ’i’ invokes the explicit-conversion function available in the
C compiler to return the (double-precision) real number 5., which in turn is
assigned to the ”double” variable ’x’. Finally, the prefix ”(int)” invokes yet
another explicit conversion, which uses the real argument 3.4 to return the
truncated integer number 3, which in turn is assigned back to ’i’.
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13.9 Implicit Conversion

As a matter of fact, the explicit conversion used in the above code is com-
pletely unnecessary: the same results could be obtained without the prefixes
”(double)” and ”(int)”, because the C compiler would invoke the required
conversions implicitly. Indeed, because ’x’ is of type ”double”, the compiler
understands that only (double-precision) real numbers can be assigned to it.
Similarly, because ’i’ is of type ”int”, the compiler understands that only in-
teger values can be assigned to it. Therefore, in both assignments, implicit
conversion is used whenever the relevant explicit conversion is missing.

13.10 Arithmetic Operations

The C compiler also supports standard binary arithmetic operations such
as addition (denoted by ’+’), subtraction (denoted by ’−’), multiplication (de-
noted by ’*’), and division (denoted by ’/’), Furthermore, it also supports the
unary positive (’+’) and negative (’−’) operators. These arithmetic operators
can be viewed as functions of two (or one in unary operators) variables that
return a result of the same type as the type of its arguments. For example,
when the compiler encounters ”i + j” for some integer variables ’i’ and ’j’, it
invokes the integer-plus-integer version of the ’+’ binary operator to produce
the integer sum of ’i’ and ’j’. When, on the other hand, it encounters ”x +
y” for some ”double” variables ’x’ and ’y’, it invokes the double-plus-double
version, to produce the required ”double” sum.

If variables of different types are added, then the variable of lower type is
converted implicitly to the higher type of the other variable before being added
to it. For example, to calculate the sum ”i + y”, ’i’ is converted implicitly to
”double” before being added to ’y’.

The arithmetic operations are executed in the standard priority order (see
Chapter 10, Section 10.5): multiplication and division are prior to the modulus
operator (%) (that returns the residual in integer division), which in turn is
prior to both addition and subtraction.

Furthermore, operations of the same priority are executed left to right. For
example, 1 + 8/4*2 is calculated as follows. First, the division operator is
invoked to calculate 8/4 = 2. Then, the multiplication operator is invoked
to calculate 2*2 = 4. Finally, the addition operator is invoked to calculate
1 + 4 = 5. (Round parentheses can be introduced to change this standard
priority order if required.)

Integer variables are divided with residual. This residual can then be ob-
tained by the modulus operator, denoted by ’%’. For example, 10/3 is 3, and

© 2009 by Taylor and Francis Group, LLC



260 CHAPTER 13. BASICS OF PROGRAMMING

10%3 is the residual in this division, namely, 1.
For the sake of readability and clarity, arithmetic symbols are often sepa-

rated from the arguments by blank spaces. For example, ”a + b” is the same
as ”a+b”, and is also slightly easier to read. When multiplication is used,
however, one must be careful to use the blank spaces symmetrically; that is,
either use them from both sides of the arithmetic symbol, or not use them
at all. For example, both ”a * b” and ”a*b” mean ’a’ times ’b’, but ”a* b”
and ”a *b” mean a completely different thing, which has nothing to do with
multiplication.

The result of an arithmetic operation, as well as the output returned from
any other function, is stored in a temporary variable that has no name. This
temporary variable exists only in the present command line, and is destroyed
at the ’;’ symbol that ends it. Thus, if the returned value is needed in forthcom-
ing commands as well, then it must be stored in a properly defined variable
in an assignment or an initialization. For example, the command line

int i = 3 * 4;

initializes the proper variable ’i’ with the value of the temporary variable
that contains the output of the binary multiplication operator, applied to the
arguments 3 and 4.

The C compiler also supports some special arithmetic operations:

x += 1.;
x -= 1.;
x *= 1.;
x /= 1.;
++i;
--i;
i++;
i--;

In fact, these operations are the same as

x = x + 1.;
x = x - 1.;
x = x * 1.;
x = x / 1.;
i = i + 1;
i = i - 1;
i = i + 1;
i = i - 1;

respectively.
Although both of the above code segments do the same, the first one is more

efficient. Indeed, each command line in it uses one operation only (update
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of an existing variable) rather than two (binary arithmetic operation and
assignment).

The ”+=”, ”− =”, ”*=”, and ”/ =” operators can also be viewed as
functions that not only update their first argument (the variable on the left)
but also return the new (up-to-date) value as an output. This property can
be used to write commands like

a = x += 1.;
j = ++i;
j = --i;

Each of these commands is executed right to left: first, the functions on the
right-hand side is invoked to update ’x’ or ’i’; then, the value returned from
this function, which is the up-to-date value of ’x’ or ’i’, is assigned to the
variable on the left-hand side (’a’ or ’j’).

The unary operators ”++” and ”−−” can be used in two possible versions:
if the symbols are placed before the variable name (as in ”++i” and ”−−i”),
then the returned value is indeed the up-to-date value of the variable, as de-
scribed above. If, on the other hand, the symbols are placed after the variable
(as in ”i++” and ”i−−”), then the returned value is the old value of the
variable.

13.11 Functions

In the above, we have seen that arithmetic operators can be viewed as
functions that use their arguments to calculate and return the required out-
put. Furthermore, in C, the assignment operator and the update operators
(”+ =”, ”++”, etc.) can also be viewed as functions that not only modify
their first argument (the variable on the left) but also return a value (usually
the assigned value or the up-to-date value).

The above functions are standard C functions: they are built in the C
compiler, and are available to any user. Here we see how programmers can
also write their own original functions. Once a function is defined (written) by
the programmer, it can be used throughout the program; in fact, it is invoked
by the C compiler just like standard C functions.

Functions must be defined in a certain format. In particular, the function
header (the first code line in the function definition) must contain the type
of the returned value (also referred to as the function type), followed by the
function name and a list of arguments in round parentheses. If no function
type is specified, then it is assumed that an integer is returned. A function
may also be of type ”void”, to indicate that no value is returned.
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The function name that follows the function type is determined arbitrarily
by the programmer. This name may then be used later on to invoke the
function.

The function name is followed by a list of arguments, separated by commas.
Each argument is preceded by its types.

The function header is followed by the function block, which starts with ’{’
and ends with ’}’. The function block (or the body of the function) contains
the list of instructions to be carried out when the function is invoked (called)
later on.

The convention is to write the symbol ’{’ that starts the function block
at the end of the header, right after the list of arguments, and to write the
symbol ’}’ that concludes the function block in a separate code line, right
under the first character in the header. This makes it clear to any reader
where the function block starts and where it ends. The body of the function
(the instructions to be executed when the function is actually called) is then
written in between these symbols. Each instruction is written in a separate
command line, shifted two blank spaces to the right. This way, the reader can
easily distinguish the function block from the rest of the code.

Here is a simple example:

int add(int i, int j){
return i+j;

}

The function ”add” [or, more precisely, ”add()”] returns the sum of its two
integer arguments. Because this sum is an integer as well, the function type
(the first word in the header) is the reserved word ”int”. The integers ’i’ and ’j’
that are added in the body of the function are referred to as local (or dummy)
arguments (or variables), because they exist only within the function block,
and disappear as soon as the function terminates. In fact, when the function
is actually called, the dummy arguments are initialized with the values of the
corresponding concrete arguments that are passed to the function as input.

The ”return” command in the function block creates an unnamed variable
to store the value returned by the function. The type of this variable is the
function type, specified in the first word in the header (”int” in the present
example). This new variable is temporary: it exists only in the command line
that calls the function, and disappears soon after.

The ”return” command also terminates the execution of the function, re-
gardless of whether the end of the function block has been reached or not. In
fact, even functions of type ”void”, which return no value, may use a ”return”
command to halt the execution whenever necessary. In this case, the ”return”
command is followed just by ’;’.

When the C compiler encounters a definition of a function, it creates a
finite state machine or an automaton (a process that takes input to executes
commands and produce an output) that implements the function in machine
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language. This automaton may have input lines to take concrete arguments
and an output line to return a value.

When the compiler encounters a call to the function, it uses the concrete
arguments as input to invoke this automaton. This approach is particularly
economic, as it avoids unnecessary compilation: indeed, the automaton is com-
piled once and for all in the definition of the function, and is then used again
and again in each and every call.

Here is how the above ”add()” function is called:

int k=3, m=5, n;
n = add(k,m);

Here ’k’ and ’m’ are the concrete arguments that are passed to the function.
When the function is called with these arguments, its local arguments ’i’ and
’j’ are initialized to have the same values as ’k’ and ’m’, respectively. The
”add()” function then calculates and returns the sum of its local arguments
’i’ and ’j’, which is indeed equal to the required sum of ’k’ and ’m’.

Because it is returned in a temporary (unnamed) variable, this sum must
be assigned to the well-defined variable ’n’ before it disappears with no trace.

The ”add()” function can also be called as follows:

int i=3, j=5, n;
n = add(i,j);

The concrete arguments ’i’ and ’j’ in this code are not the same as the dummy
arguments in the definition of the ”add()” function above. In fact, they are
well-defined variables that exist before, during, and after the call, whereas the
dummy arguments exist only during the call.

Although the dummy arguments have the same names as the concrete ar-
guments, they are stored elsewhere in the computer memory. This storage is
indeed released once the function terminates. The concrete ’i’ and ’j’, on the
other hand, which have been defined before the call, continue to occupy their
original storage after the call as well.

Thus, there is no ambiguity in the names ’i’ and ’j’. In the call ”add(i,j)”,
they refer to the external variables that are passed as concrete arguments.
In the definition of the function, on the other hand, they refer to the local
(or dummy) variables. It is thus allowed and indeed recommended to use the
same names for the external and the local variables to reflect the fact that
they play the same roles in the mathematical formula to calculate the sum
”i+j”.
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13.12 The ”Main” Function

Every C program must contain a function whose name is ”main()”. This
function doesn’t have to be called explicitly; it is called only implicitly upon
running the program, and the commands in it are executed one by one. The
rest of the functions in the program, on the other hand, are not executed until
they are called in one of the commands in ”main()”.

The ”main()” function returns an integer value (say, 0) that is never used
in the present program. The main purpose of the ”return” command is thus
to halt the run whenever necessary.

13.13 Printing Output

Here we show how the ”main” function can be used to make a few calcu-
lations and print the results onto the screen. For this purpose, the ”include”
command is placed at the beginning of the program grants access to the stan-
dard I/O (Input/Output) library that contains all sorts of useful functions,
including functions to read/write data. In particular, it contains the standard
”printf()” function to print data onto the screen.

The ”printf()” function takes the following arguments. The first argument
is the string to be printed onto the screen. The string appears in double
quotation marks, and often ends with the character ’\n’, which stands for “end
of line.” The string may also contain the symbols ”%d” (integer number) and
”%f” (real number). These numbers are specified in the rest of the arguments
passed to the ”printf()” function.

In the following program, the ”printf()” function is used to illustrate the
difference between integer division and real division. For this purpose, the
program first prints the result and the residual in the integer division of 10/3.
Then, it prints the result of the real division of 10./3, in which the integer 3
is converted implicitly to the real number 3. before being used to divide the
real number 10.:

#include<stdio.h>
int main(){
printf("10/3=%d,10 mod 3=%d,10./3.=%f\n",10/3,10%3,10./3);
return 0;

}

Furthermore, since the assignment operator not only assigns but also returns
the assigned value, one can also write
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int i;
printf("10/3=%d.\n",i = 10/3);

to assign the value 10/3 = 3 to ’i’ and to print it onto the screen at the same
time.

Initialization, on the other hand, returns no value, so one can’t write

printf("10/3=%d.\n",int i = 10/3);
/* wrong!!! no returned value */

Here is a useful function that just prints its ”double” argument onto the
screen:

void print(double d){
printf("%f; ",d);

} /* print a double variable */

With this function, the user can print a ”double” variable ’x’ onto the screen
just by writing ”print(x)”.

13.14 Comparison Operators

The C compiler also supports the binary comparison operators ’<’, ’>’,
”==”, ”<=”, and ”>=”. In particular, if ’i’ and ’j’ are variables of the same
type (that is, either both are of type ”int” or both are of type ”float” or both
are of type ”double”), then

• ”i<j” returns a nonzero integer (say, 1) if and only if ’i’ is indeed smaller
than ’j’; otherwise, it returns the integer 0.

• ”i>j” returns a nonzero integer (to indicate true) if and only if ’i’ is indeed
greater than ’j’; otherwise, it returns the integer 0 (to indicate false).

• ”i==j” returns a nonzero integer if and only if ’i’ is indeed equal to ’j’;
otherwise, it returns the integer 0.

• ”i! =j” returns a nonzero integer if and only if ’i’ is indeed different from
’j’; otherwise, it returns the integer 0.

• ”i<=j” returns a nonzero integer if and only if ’i’ is indeed smaller than
or equal to ’j’; otherwise, it returns the integer 0.

• ”i>=j” returns a nonzero integer if and only if ’i’ is indeed greater than
or equal to ’j’; otherwise, it returns the integer 0.

Be careful not to confuse the above ”equal to” operator, ”==”, with the
assignment operator ’=’, which has a completely different meaning.
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13.15 Boolean Operators

The C compiler also supports the Boolean (logical) operators used in math-
ematical logics. For example, if ’i’ and ’j’ are integer variables, then

• ”i&&j” is a nonzero integer (say, 1) if and only if both ’i’ and ’j’ are
nonzero; otherwise, it is the integer 0.

• ”i| |j” is the integer 0 if and only if both ’i’ and ’j’ are zero; otherwise, it
is a nonzero integer (say, 1).

• ”!i” is a nonzero integer (say, 1) if and only if ’i’ is zero; otherwise, it is
the integer 0.

The priority order of these operators is as in mathematical logics (see Chap-
ter 10, Section 10.6): the unary ”not” operator, ’ !’, is prior to the binary
”and” operator, ”&&”, which in turn is prior to the binary ”or” operator,
”| |”. Round parentheses can be introduced to change this standard priority
order if necessary.

13.16 The ”?:” Operator

The ”?:” operator takes three arguments, separated by the ’?’ and ’:’ sym-
bols. The first argument, an integer, is placed before the ’?’ symbol. The
second argument is placed after the ’?’ symbol and before the ’:’ symbol.
Finally, the third argument, which is of the same type as the second one, is
placed right after the ’:’ symbol.

Now, the ”?:” operator works as follows. If the first argument is nonzero,
then the second argument is returned. If, on the other hand, the first argument
is zero, then the third argument is returned.

Note that the output returned from the ”?:” operator is stored in a tem-
porary variable, which disappears at the end of the present command line.
Therefore, it must be stored in a properly defined variable if it is indeed
required later in the code:

double a = 3., b = 5.;
double max = a > b ? a : b;

Here ’a’ is smaller than ’b’ so ”a>b” is false or zero. Therefore, the ”?:”
operator that uses it as its first argument returns its third argument, ’b’. This
output is used to initialize the variable ”max”, which stores it safely for future
use.
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13.17 Conditional Instructions
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FIGURE 13.1: The if-else scheme. If the condition at the top holds, then the
commands on the right are executed. Otherwise, the commands on the left are

executed, including the inner if-else question.

The reserved words ”if” and ”else” allow one to write conditional instruc-
tions as follows: if some integer variable is nonzero (or if something is true),
then do some instruction(s); else, do some other instruction(s) (see Figure
13.1). For example, the above code can also be implemented by

double a = 3., b = 5.;
double max;
if(a > b)
max = a;

else
max = b;

In this code, if the value returned by the ’<’ operator is nonzero (’a’ is in-
deed greater than ’b’), then the instruction that follows the ”if” question is
executed, and ”max” is assigned with the value of ’a’. If, on the other hand,
’a’ is smaller than or equal to ’b’, then the instruction that follows the ”else”
is executed, and ”max” is assigned with the value of ’b’.
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The ”else” part is optional. If it is missing, then nothing is done if the
integer that follows the ”if” is zero.

In the above code segment, there is only one instruction to be executed if the
condition that follows the ”if” holds, and another instruction to be executed
if it does not. This, however, is not always the case: one may wish to carry
out a complete block of instruction if the condition holds, and another one if
it does not. For example,

double a = 3., b = 5.;
double nim, max;
if(a > b){
max = a;
min = b;

}
else{
max = b;
min = a;

}

13.18 Scope of Variables

A variable in C exists only throughout the block in which it is defined. This
is why the variables ”max” and ”min” are defined in the beginning of the
above code segment, before the ”if” and ”else” blocks. This way, the variables
exist not only in these blocks but also after they terminate, and the values
assigned to them can be used later on.

To illustrate this point, consider the following strange code, in which both
”max” and ”min” are local variables that are defined and exist only within
the ”if” and ”else” blocks:

double a = 3., b = 5.;
if(a>b){
double max = a;/* bad programming!!! */
double min = b;/* local variables */

}
else{
double max = b; /* bad programming!!! */
double min = a; /* local variables */

}

This code is completely useless: indeed, both ”max” and ”min” are local
variables that disappear at the ’}’ symbol that ends the block in which they
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are defined, before they could be of any use. This is why it makes more sense
to define them before the blocks, as before. This way, they continue to exist
even after the blocks terminate, and can be of further use.

When defined properly before the if-else blocks, ”min” and ”max” contain
the minimum and maximum (respectively) of the original variables ’a’ and
’b’. Unfortunately, the above code must be rewritten every time one needs to
compute the minimum or maximum of two numbers. To avoid this, it makes
sense to define functions that return the minimum and the maximum of their
two arguments.

These functions can be written in two possible versions: functions that take
integer arguments to return an integer output,

int max(int a, int b){
return a>b ? a : b;

} /* maximum of two integers */

int min(int a, int b){
return a<b ? a : b;

} /* minimum of two integers */

and functions that take real arguments to return a real output:

double max(double a, double b){
return a>b ? a : b;

} /* maximum of real numbers */

double min(double a, double b){
return a<b ? a : b;

} /* minimum of real numbers */

With these functions, the user can write commands like ”max(c,d)” to com-
pute the maximum of some variables ’c’ and ’d’ defined beforehand.

When the compiler encounters such a command, it first looks at the type
of ’c’ and ’d’. If they are of type ”int”, then it invokes the integer version of
the ”max” function to compute their integer maximum. If, on the other hand,
they are of type ”double”, then it invokes the ”double” version to return
their ”double” maximum. In both cases, the local (dummy) arguments ’a’
and ’b’ are initialized in the function block to have the same values as ’c’ and
’d’, respectively, and disappear at the ’}’ symbol that marks the end of the
function block, after being used to construct the temporary variable returned
by the function.

As a matter of fact, if the user defines two variables ’a’ and ’b’, he/she
can compute their maximum by writing ”max(a,b)”. In this case, there is no
confusion between the external variables ’a’ and ’b’ that are passed to the
function as concrete arguments and exist before, during, and after the call
and the local variables ’a’ and ’b’ that are initialized with their values at the
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beginning of the function block and disappear soon after having been used to
compute the required maximum at the end of the function block.

Another useful function returns the absolute value of a real number:

double abs(double d){
return d > 0. ? d : -d;

} /* absolute value */

This function is actually available in the standard ”math.h” library with the
slightly different name ”fabs()”. This library can be included in a program
by writing

#include<math.h>

in the beginning of it. The user can then write either ”abs(x)” or ”fabs(x)”
to have the absolute value of the well-defined variable ’x’.

13.19 Loops
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FIGURE 13.2: A loop: the same instruction is repeated for i = 0, 1, 2, 3, 4, 5,
6, 7, 8.

© 2009 by Taylor and Francis Group, LLC



13.19. LOOPS 271

The main advantage of the computer over the human mind is its ability
to perform many calculations quickly, without forgetting anything or getting
tired. The human, however, must first feed it with the suitable instructions.

Thus, it would be counterproductive to write every instruction explicitly.
In a high-level programming language such as C, there must be a mechanism
to instruct the computer to repeat the same calculation time and again in a
few code lines only. This is the loop (Figure 13.2).

The loop uses an index, which is usually an integer variable (say, ’i’) that
changes throughout the loop to indicate what data should be used. For ex-
ample, the following loop prints onto the screen the natural numbers from 1
to 100:

int i = 1;
while(i<=100){
printf("%d\n",i);
i++;

}

This loop consists of two parts: the header, which contains the reserved word
”while” followed by a temporary integer variable in round parentheses, and a
block of instructions. When the loop is entered, the instructions in the block
are executed time and again so long as the temporary integer variable in the
header is nonzero. When this variable becomes zero, the loop terminates, and
the execution proceeds to the next command line that follows the block of
instructions, if any.

In the above example, the header invokes the ’<’ operator to check whether
’i’ is still smaller than or equal to 100 or not. If it is, then ’i’ is printed onto
the screen and incremented by 1, as required. The loop terminates once ’i’
reaches the value of 101, which is not printed any more, as required.

Thanks to the fact that ’i’ has been defined before the block of instructions,
it continues to exist after it as well. This way, the value 101 is kept in it for
further use.

Thanks to the fact that the function ”i++” not only increments ’i’ by 1 but
also returns the old value of ’i’, the two instructions in the above block could
actually be united into a single instruction. This way, the ’{’ and ’}’ symbols
that mark the start and the end of the block of instructions can be omitted:

int i = 1;
while(i<=100)
printf("%d\n",i++);

Furthermore, the above ”while” loop can also be written equivalently as a
“do-while” loop:

int i = 1;
do
printf("%d\n",i++);
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while(i<=100);

Moreover, the loop can be written equivalently as a ”for” loop:

int i;
for(i=1;i<=100;i++)
printf("%d\n",i);

The header in the ”for” loop contains the reserved word ”for”, followed by
round parentheses, which contain three items separated by ’;’ symbols. The
first item contains a command to be executed upon entering the loop. The
second item contains a temporary integer variable to terminate the loop when
becoming zero. The third item contains a command to be repeated right after
each time the instruction (or the block of instructions) that follows the header
is repeated in the loop.

In the above example, ’i’ is printed time and again onto the screen (as in
the instruction) and incremented by 1 (as in the third item in the header),
from its initial value 1 (as in the first item in the header) to the value 100.
When ’i’ becomes 101, it is no longer printed or incremented, and the loop
terminates thanks to the second item in the header, as required. Furthermore,
thanks to the fact that ’i’ has been defined before the loop, it continues to
exist after it as well, and the value 101 is kept in it for further use.

Because the command in the first item in the header is carried out only once
at the beginning of the loop, it can also be placed before the loop, leaving the
first item in the header empty. Furthermore, because the command in the
third item in the header is carried out right after the instruction(s), it can
also be placed at the end of the instruction block, leaving the third item in
the header empty:

int i=1;
for(;i<=100;){
printf("%d\n",i);
i++;

}

Still, it makes more sense to place commands that have something to do with
the index in the header rather than before or after it. In particular, if ’i’ is
no longer needed after the loop, then it makes more sense to place its entire
definition in the first item in the header:

for(int i=1;i<=100;i++)
printf("%d\n",i);

This way, ’i’ is a local variable that exists throughout the loop only, and
disappears soon after.
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13.20 The Power Function

In the following sections, we give some examples to show the usefulness of
loops. The following function calculates the power baseexp, where ”base” is an
integer number and ”exp” is a natural number (a variable of type ”unsigned”):

int power(int base, unsigned exp){
int result = 1;
for(int i=0; i<exp; i++)
result *= base;

return result;
} /* "base" to the "exp" */

Indeed, the local variable ”result” is initially 1, and is then multiplied by
”base” in a loop that is repeated ”exp” times to produce the required result
baseexp.

13.21 Integer Logarithm

Another nice example of using loops is the following ”log()” function, which
returns blog2 nc (the largest integer that is smaller than or equal to log2 n),
where n is a given natural number:

int log(int n){
int log2 = 0;
while(n>1){
n /= 2;
log2++;

}
return log2;

} /* compute log(n) */

Indeed, the local variable ”log2” is initially zero, and is incremented suc-
cessively by one each time the dummy argument ’n’ is divided (an integer
division) by two. This is repeated in the loop until ’n’ cannot be divided any
longer, when ”log2” is returned as the required result.
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13.22 The Factorial Function

A loop is also useful in the implementation of the factorial function, defined
by

n! = 1 · 2 · 3 · · ·n,

where n is a natural number. (The factorial is also defined for n = 0: 0! = 1.)
The implementation is as follows:

int factorial(int n){
int result = 1;
for(int i=1; i<=n; i++)
result *= i;

return result;
} /* compute n! using a loop */

Indeed, the local variable ”result” is initially 1, and is then multiplied succes-
sively by the index ’i’, until ’i’ reaches the value ’n’, when ”result” is returned
as the required result.

13.23 Nested Loops

The instruction block in the loop can by itself contain a loop. This is called
a nested loop or a double loop (Figure 13.3).

Here is a program that uses a nested loop to print a checkerboard:

#include<stdio.h>
int main(){
for(int i=0;i<8;i++){
for(int j=0;j<8;j++)
printf("%c ",((i+j)%2)?’*’:’o’);

printf("\n");
}
return 0;

} /* print a checkerboard */

Indeed, the index ’i’ (the row number in the checkerboard) is incremented in
the main (outer) loop, whereas the index ’j’ (the row number in the checker-
board) is incremented in the secondary (inner) loop. The instruction block in
the inner loop contains one instruction only: to print a particular symbol if the
sum of ’i’ and ’j’ is even (to indicate a red subsquare in the checkerboard) or
another symbol if it is odd (to indicate a black subsquare in the checkerboard).
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FIGURE 13.3: Nested loops: the outer loop uses the index i = 0, 1, 2; for each
particular i, the inner loop uses the index j = 0, 1, 2.

Finally, the instruction block of the outer loop contains one extra instruction
to move on to the next row in the printed image of the checkerboard.

13.24 Reversed Number

Here a loop is used in a function that takes an arbitrarily long natural
number and produces another natural number with a reversed order of digits.
For example, for the concrete argument 123, the function returns the output
321.

int reversed(int number){
int result=0;
while (number){
result *= 10;
result += number % 10;
number /= 10;

}
return result;

} /* reversing an integer number */

Indeed, the integer local variable ”result” is initially zero. In the loop, the
most significant digits at the head of the dummy argument ”number” are
transferred one by one to the tail of ”result” to serve as its least significant
digits, until ”number” vanishes and ”result” is returned as the required re-
versed number.

The reversed number is produced above in the usual decimal base. A slightly
different version of the above function produces the reversed number in an-
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other base. This is done just by introducing the extra argument ”base” to
specify the required base to represent the reversed number:

int reversed(int number, int base){
int result=0;
while (number){
result *= 10;
result += number % base;
number /= base;

}
return result;

} /* reversed number in any base */

The only difference is that in this version the digits are truncated from the
dummy argument ”number” in its representation in base ”base”, and are
added one by one to ”result” in its representation in base ”base” as well.

13.25 Binary Number

The above version of the ”reversed()” function is particularly useful to
obtain the binary representation of an arbitrarily long natural number. Indeed,
to have this representation, the ”reversed()” function is called twice: once to
obtain the reversed binary representation, and once again to obtain the well-
ordered binary representation.

Note that, when the concrete argument that is passed to the ”reversed()”
function ends with zeroes, they get lost in the reversed number. For example,
3400 is reversed into 43 rather than 043. This is why an even number must
be incremented by 1 to become odd before being passed to the ”reversed()”
function. Once the binary representation of this incremented number is ready,
it is decremented by 1 to yield the correct binary representation of the original
number, as required.

int binary(int n){
int last = 1;

The local variable ”last” is supposed to contain the last binary digit in the
original number ’n’. Here we have used the default assumption that ’n’ is odd,
so ”last” is initialized with the value 1. If, on the other hand, ’n’ is even, then
its last binary digit is 0 rather than 1. As discussed above, in this case ’n’ must
be incremented by 1, so its last binary digit must be first stored in ”last” for
safekeeping:

if(!(n%2)){
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last = 0;
n += 1;

}

By now, the dummy argument ’n’ is odd, so its binary representation ends
with 1. Therefore, ’n’ can be safely reversed, with no fear that leading zeroes
in the reversed number would be lost. In fact, the first call to the ”reversed()”
function uses 2 as a second argument to produces the reversed binary rep-
resentation of ’n’. The second call, on the other hand, uses 10 as a second
argument, so it makes no change of base but merely reverses the number once
again. Finally, if ”last” is zero, which indicates that the original number is
even, then 1 must be subtracted before the final result is returned:

return reversed(reversed(n,2),10) - (1-last);
} /* binary representation */

13.26 Pointers

A pointer is an integer variable that may contain only the address of a vari-
able of a particular type. For example, pointer-to-”double” may contain only
the address of a ”double” variable, whereas pointer-to-integer may contain
only the address of an integer variable.

Most often, the pointer is initialized with a random meaningless value or
with the zero value. We then say that the pointer points to nothing. When,
on the other hand, the pointer contains a meaningful address of an existing
variable, we say that the pointer “points” to the variable.

Here is how pointers are defined:

double *p;
int *q;

Here ’*’ stands not for multiplication but rather for dereferencing. The deref-
erencing operator takes a pointer to return its content, or the variable it points
to. In the above code, the content of ’p’, ”*p”, is defined to be a ”double”
variable. This means that ’p’ is defined at the same time to be a pointer-to-
”double”. The content of ’q’, on the other hand, is defined to be an integer
variable, which also defines ’q’ at the same time to be a pointer-to-integer.

The ’*’ symbol can also be shifted one space to the left with the same
meaning:

double* p;
int* q;
char* w;
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In this style, ”double*” can be viewed as the pointer-to-”double” type, (used
to define ’p’), ”int*” can be viewed as the pointer-to-integer type (used to
define ’q’), and ”char*” can be viewed as the pointer-to-character (or string)
type (used to define ’w’). Since the pointers ’p’, ’q’, and ’w’ are not initialized,
they contain random meaningless values or the zero value, which means that
they point to nothing.

13.27 Pointer to a Constant Variable

One can also define a pointer to a constant variable by writing

const int* p;

Here, the content of ’p’ is a constant integer (or, in other words, ’p’ points to
a constant integer). Thus, once the content of ’p’ is initialized to have some
value, it can never change throughout the block in which ’p’ is defined. For
this reason, ’p’ can never be assigned to (or be used to initialize) a pointer-
to-nonconstant-integer. Indeed, since ’p’ contains the address of a constant
variable, if one wrote

int* q = p;/* error!!! p points to a read-only integer */

then the new pointer ’q’ would contain the same address as well, so the con-
stant variable could change through ’q’, which is of course in contradiction to
its very definition as a constant variable. For this reason, the compiler would
never accept such a code line, and would issue a compilation error.

13.28 The Referencing Operator

As we have seen above, the dereferencing operator ’*’ takes a pointer to
returns its content. The referencing operator ’&’, on the other hand, takes a
variable to return its address:

double* p;
double v;
p = &v;

Here the address of ’v’, ”&v”, is assigned to the pointer ’p’.
Both the referencing and the dereferencing operators are used often later

on in the book.
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13.29 Arrays

An array in C is a pointer to the first variable in a sequence of variables of
the same type and size that are placed continuously in the computer memory.
For example, the command

double a[10];

defines an array of 10 variables of type ”double”, which are allocated consec-
utive memory and referred to as the entries of ’a’ or ”a[0]”, ”a[1]”, ”a[2]”, . . . ,
”a[9]”. Thanks to the fact that the entries are stored consecutively in the com-
puter memory, their addresses are ’a’, ”a+1”, ”a+2”, . . . , ”a+9”, respectively.
(This is referred to as pointer arithmetics.)

13.30 Two-Dimensional Arrays

The entries in the array must all be of the same type and have the same size
(occupy the same amount of memory). This implies that one can define an
array of arrays, that is, an array whose entries are arrays of the same length.
Indeed, since these entries occupy the same amount of memory, they can be
placed one by one in an array, to produce a two-dimensional array.

For example, one can define an array of five entries, each of which is an
array of ten ”double” variables:

double a[5][10];

The ”double” variables in this array are ordered row by row in the computer
memory. More precisely,k the first row, ”a[0][0]”, ”a[0][1]”, . . . , ”a[0][9]”, is
stored first, the second row, ”a[1][0]”, ”a[1][1]”, . . . , ”a[1][9]” is stored next,
and so on. This storage pattern is particularly suitable for scanning the two-
dimensional array in nested loops: the outer loop ”jumps” from row to row
by advancing the first index in the two-dimensional array, whereas the inner
loop scans each individual row by advancing the second index. This way, the
variables in the two-dimensional array are scanned in their physical order in
the computer memory to increase efficiency.

The name of the two-dimensional array, ’a’, points to its first entry, the
”double” variable ”a[0][0]”. Moreover, thanks to the above storage pattern in
which the entries in the two-dimensional array are stored row by row, the
”double” variable ”a[i][j]” is stored at the address (or pointer) ”a+10*i+j”
(0 ≤ i < 5, 0 ≤ j < 10). (This is referred to as pointer arithmetics.)
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When the size of the two-dimensional array is not known in advance in com-
pilation time, it can still be defined as a pointer-to-pointer-to-double rather
than array-of-array-of-doubles:

double** a;

13.31 Passing Arguments to Functions

The pointers introduced above are particularly useful in passing arguments
to functions. Consider, for example, the following function, which takes an
integer argument and returns its value plus one:

int addOne(int i){
return ++i;

} /* return value plus one */

The concrete argument ’i’ passed to this function, however, remains un-
changed. For example, if a user calls the function by writing

int k=0;
addOne(k); /* k remains unchanged */

then the value of ’k’ remains zero. This is because ’k’ is passed to the function
by value (or by name). In other words, when the function is called with ’k’
as a concrete argument, it defines a local variable, named ’i’, and initializes
it with the value of ’k’. It is ’i’, not ’k’, that is used and indeed changed
throughout the function block. Unfortunately, ’i’ is only a local variable that
disappears at the end of this block, so all the changes made to it are lost.

Many functions are not supposed to change their arguments but merely
to use them to calculate an output. In such functions, passing arguments by
name is good enough. In some other functions, however, there may be a need
not only to read the value of the concrete argument but also to change it
permanently. In such cases, the concrete argument must be passed by address
rather than by name:

int addOne(int *q){
return ++(*q);

} /* add one */

In this version, the function takes an argument of type pointer-to-integer
rather than integer. When it is called, the function creates a local copy of
this pointer, named ’q’, and initializes it with the same address as in the
concrete pointer. The address in ’q’ is then used not only to read but also to
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actually change the content of ’q’ (which is also the content of the concrete
pointer), as required.

The user can now call the function by writing

int k=0;
addOne(&k); /* k is indeed incremented by 1 */

In this call, the address of ’k’ is passed as a concrete argument. The func-
tion then creates a local variable of type pointer-to-integer, named ’q’, and
initializes it with the address of ’k’. Then, ’k’ is incremented by 1 through its
address in ’q’. Although ’q’ is only a local pointer that disappears when the
function terminates, the effect on ’k’ remains valid, as required.

13.32 Input/Output (I/O)

The first step in using the computer is to feed it with input data. Among
these data, there is also the program to be executed by the computer. Once
the computer completes the execution, it provides the user with output data.
The only way for the user to make sure that there is no mistake (bug) in the
original program is to examine these data and verify that they indeed make
sense.

So far, we have only used a function that prints output: the standard
”printf” function, which prints onto the screen a string of characters, includ-
ing the required output calculated throughout the execution of the program.
Below we also use a function that reads input to the computer: this is the stan-
dard ”scanf” function, which reads a string of characters from the screen.

The first argument in this function is this string to be read. The rest of the
arguments are the addresses of the variables in which the input data should
be stored for further use. These arguments must indeed be passed by address
(rather than by name) to store properly the values that are read into them:

#include<stdio.h>
#include<stdlib.h>
int main(){
int i=0;
double x=0.;
scanf("%d %f\n",&i,&x);
printf("i=%d, x=%f\n",i,x);

Indeed, to run this code, the user must type an integer number and a ”double”
number onto the screen, and then hit the ”return” key on the keyboard. Once
the ”scanf” function is called, it creates local copies of the addresses of the
variables ’i’ and ’x’ defined before, which are then used to read these numbers
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from the screen into ’i’ and ’x’. Although these local copies disappear at the
end of the call, the external variables ’i’ and ’x’ still exist, with the input
values stored safely in them. To verify this, these values are then printed back
to the screen at the end of the above code.

13.33 Input/Out with Files

So far, we have seen standard functions to read from and write to the screen.
However, the screen can contain only a limited amount of data. Much larger
storage resources are available in files, which are stored in the computer’s
secondary memory.

It is thus important to have functions to read from and write onto files rather
than the screen. These are the ”fscanf” and ”fprintf” standard functions.

Clearly, to use a file, one must first have access to it and a way to refer to it.
The ”fopen” standard function opens a file for reading or writing and returns
its address in the computer’s secondary memory. This address is stored in a
variable of type pointer-to-file (”FILE*”), where ”FILE” is a reserved word
to indicate a file variable.

The ”fopen” function takes two string arguments: the first string is the
name of the file in the computer memory, and the second string is either ’r’
(to read from the file) or ’w’ (to write on it):

FILE* fp = fopen("readFile","r");

Here the pointer-to-file ”fp” is defined and initialized with the address of the
file ”readFile” in the secondary memory. This way, ”fp” can be passed to the
”fscanf” function as its first argument. In fact, ”fscanf” can be viewed as an
advanced version of ”scanf”, which reads from the file whose address is in its
first argument rather than from the screen:

fscanf(fp,"%d %f\n",&i,&x);

In this example, ”fscanf” reads two numbers from the file ”readFile”: an in-
teger number into ’i’, and a double-precision real number into ’x’.

To verify that the integer and real numbers in ”readFile” have indeed been
read properly, we now print them onto the file ”writeFile”. To open this file
for writing, the ”fopen” function must be called this time with the string ’w’
as its second argument:

fp = fopen("writeFile","w");

The pointer-to-file ”fp”, which contains now the address of ”writeFile”, is
passed to the ”fprintf” function as its first argument. This function may be
viewed as an advanced version of ”printf”, which prints onto the file whose
address is in its first argument rather than onto the screen:
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fprintf(fp,"i=%d, x=%f\n",i,x);
return 0;

}

Thus, the values of ’i’ and ’x’ are printed onto the file ”writeFile”, which is
stored in the directory in which the program runs.

13.34 Exercises

1. The standard function ”sizeof()” takes some type in C and returns the
number of bytes required to store a variable of this type in the computer
memory. For example, on most computers, ”sizeof(float)” returns 4, in-
dicating that four bytes are used to store a ”float” number. Since each
byte stores two decimal digits, the precision of type ”float” is eight digits.
On the other hand, ”sizeof(double)” is usually 8, indicating that ”dou-
ble” numbers are stored with a precision of sixteen decimal digits. Write
a code that prints ”sizeof(float)” and ”sizeof(double)” to find out what
the precision is on your computer.

2. Verify that arithmetic operations with ”double” numbers are indeed more
precise than those with ”float” numbers by printing the difference x1−x2,
where x1 = 1010 + 1 and x2 = 1010. If x1 and x2 are defined as ”double”
variables, then the result is 1, as it should be. If, however, they are defined
as ”float” numbers, then the result is 0, due to finite machine precision.

3. As we’ve seen in Chapter 3, Section 3.7, the harmonic series
∑

1/n di-
verges. Write a function ”harmonic(N)” that returns the sum of the first
N terms in the harmonic series. (Make sure to use ”1./n” in your code
rather than ”1/n”, so that the division is interpreted as division of real
numbers rather than division of integers.) Verify that the result of this
function grows indefinitely with N .

4. On the other hand, the series
∑

1/n2 converges. Indeed,

∞∑
n=1

1
n2
≤

∞∑
n=1

2
n(n + 1)

= 2
∞∑

n=1

(
1
n
− 1

n + 1

)
= 2.

Write the function ”series(N)” that calculates the sum of the first N terms
in this series. Verify that the result of this function indeed converges as
N increases.

5. Write a function ”board(N)” that prints a checkerboard of size N × N ,
where N is an integer argument. Use ’+’ to denote red cells and ’-’ to
denote black cells on the board.

6. Run the code segments of the examples in Sections 13.20–13.22 and verify
that they indeed produce the required results.
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7. Define a two-dimensional array that stores the checkerboard in Section
13.23. Scan it in a nested loop and print it to the screen row by row.
Verify that the output is indeed the same as in Section 13.23.

8. Rewrite the function ”reversed()” in Section 13.24 more elegantly, so its
block contains three lines only. The solution can be found in Section 28.1
in the appendix.

9. Generalize the function ”binary()” in Section 13.25 into a more gen-
eral function ”changeBase()” that accepts two integer parameters ’n’ and
”base” and returns ’n’ as represented in base ”base”. Make sure to write
the ”changeBase()” function so elegantly that its block contains two lines
only. The solution can be found in Section 28.1 in the appendix.
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Chapter 14

Recursion

C may be viewed as a ”function-oriented” programming language. Indeed, a C
command is not only an instruction to the computer but also a function that
may return a value for further use. This is also why C is so good at recursion:
a function written in C can easily call itself recursively, using input calculated
in the original call.

Recursion may be viewed as a practical form of mathematical induction.
The only difference is that mathematical induction works in the standard
forward direction, starting from the simplest object and advancing gradually
to more and more complex objects, whereas recursion works in the backward
direction, applying a function to a complex object by calling it recursively to
simpler and simpler objects.

Thus, mathematical induction and recursion are the two sides of the same
thing. Indeed, the recursive call to a C function uses the induction hypothesis
to guarantee that it is indeed valid. Furthermore, the innermost recursive call
uses the initial condition in the corresponding mathematical induction to start
the process.

Below we show how mathematical functions and algorithms can be imple-
mented easily and transparently using recursion. This can be viewed as a
preparation work for the study of recursive mathematical objects in C++,
later on in the book.

14.1 Recursive Functions

Recursion is a process in which a function is called in its very definition.
The recursive call may use not only new arguments that are different from
those used in the original call but also new data structures that must be allo-
cated extra memory dynamically in run time. This is why C, which supports
dynamic memory allocation, is so suitable for recursion.

In the sequel, we use recursion to reimplement some functions that have
already been implemented with loops in Chapter 13. The present implemen-
tation is often more transparent and elegant, as it is more in the spirit of the
original mathematical formulation.

285
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14.2 The Power Function

We start with the ”power” function, implemented with a loop in Chapter 13,
Section 13.20. The present recursive implementation is more natural, because
it follows the original mathematical definition of the power function, which
uses mathematical induction as follows:

baseexp =
{

base · baseexp−1 if exp ≥ 1
1 if exp = 0.

This formulation is indeed translated into a computer code in the following
implementation:

int power(int base, unsigned exp){
return exp ? base * power(base,exp-1) : 1;

} /* "base" to the "exp" (with recursion) */

Indeed, if the integer exponent ”exp” is greater than zero, then the induction
hypothesis is used to calculate the required result recursively. If, on the other
hand, ”exp” is zero, then the initial condition in the mathematical induction
is used to produce the required result with no recursive call.

The very definition of the ”power” function uses a recursive call to the same
function itself. When the computer encounters this call in run time, it uses
the very definition of the ”power” function to execute it. For this purpose, it
allocates the required memory for the arguments and the returned value in
this recursive call.

The recursive call can by itself use a further recursive call with a yet smaller
argument ”exp”. This nested process continues until the final (innermost)
recursive call that uses a zero ”exp” argument is reached, in which no further
recursive calls are made.

The extra memory allocation for arguments and returned values required
throughout the recursive process may make the recursive implementation
slightly less efficient than the original one. This overhead, however, is well
worth it to have an elegant code that follows the original mathematical for-
mula, particularly when more complicated algorithms and structures are con-
sidered later on in the book.

A version of the ”power” function can also be written for a real base:

double power(double basis, unsigned exp){
return exp ? basis * power(basis,exp-1) : 1.;

} /* double "basis" to the "exp" */
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14.3 Integer Logarithm

The ”log()” function in Chapter 13, Section 13.21 can also be reimplemented
recursively as follows:

int log(int n){
return n>1 ? log(n/2)+1 : 0;

} /* compute log(n) recursively */

The correctness of this code can indeed be proved by mathematical induction
on the input ’n’.

14.4 The Factorial Function

The ”factorial” function in Chapter 13, Section 13.22 can also be imple-
mented most naturally using recursion. This implementation uses the original
definition of the factorial function by mathematical induction:

n! =
{

1 if n = 0,
n((n− 1)!) if n > 0.

This definition is indeed translated into a computer code as follows:

int factorial(int n){
return n ? n * factorial(n-1) : 1;

} /* compute n! using recursion */

As discussed before, this implementation may be slightly less efficient than
the original one in Chapter 13, Section 13.22 due to the extra memory al-
location required for the arguments and return values in each recursive call.
Still, it is particularly short and elegant, and follows the spirit of the original
mathematical definition.

14.5 Ordered Arrays

Here we give another example to show how useful recursion may be. Con-
sider the following problem: given an array a of length n that contains n
integer numbers in increasing order, that is,

© 2009 by Taylor and Francis Group, LLC



288 CHAPTER 14. RECURSION

a[0] < a[1] < a[2] < · · · < a[n− 1],

find out whether a given integer number k is contained in a, that is, whether
there exists at least one particular index i (0 ≤ i < n) for which

a[i] = k.

Of course, this task can be completed easily using a loop to scan the cells in a
one by one. However, this approach may cost n comparisons to check whether
k is indeed equal to an item in a. Furthermore, the above approach never uses
the property that the items in the array are ordered in increasing order. Is
there a better way to complete the task?

Fortunately, there is an algorithm that uses the order in the array to solve
the above problem in log2 n comparisons only. This algorithm uses recursion
as follows. First, it divides a into two subarrays of length n/2 each: the first
half, which contains the items indexed by 0, 1, 2, . . . , n/2− 1, and the second
half, which contains the items indexed by n/2, n/2 + 1, n/2 + 2, . . . , n − 1.
Then, it compares k with the middle item in the original array, a[n/2]. Now,
if k < a[n/2], then k can lie only in the first subarray, so the algorithm should
be applied recursively to it. If, on the other hand, k ≥ a[n/2], then k can lie
only in the second subarray, so the algorithm should be applied recursively to
it.
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original array

first half second half
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FIGURE 14.1: Finding whether a given number k lies in a given array of n
cells. In each level, the algorithm is applied recursively either to the left subarray

or to the right subarray.
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The above algorithm forms a virtual binary tree of log2 n levels (Chapter 10,
Section 10.4). In each level, only one comparison is used to decide whether the
algorithm should proceed to the left or right subtree (Figure 14.1). Therefore,
the total cost of the algorithm is log2 n comparisons only.

Here is the function ”findInArray()” that implements the above algorithm.
The function uses two nested ”?:” questions to return the correct logical an-
swer: 1 if k is indeed contained in the array a (of length n), or 0 if it is not.
To make the code easy to understand, it is typed with the same rules as in
”if-else” questions: the instructions that should be carried out whether the
condition in the ”?:” question is satisfied or not are shifted two blank spaces
to the right.

int findInArray(int n, int* a, int k){
return n > 1 ?

k < a[n/2] ?
findInArray(n/2,a,k)

:
findInArray((n+1)/2 ,a+n/2,k)

:
k == a[0];

} /* find out whether k lies in a[] */

Note that the outer question, ”n > 1?”, is associated with the case n = 1
in the mathematical induction in Chapter 10, Section 10.2. Indeed, if n = 1,
then the array a contains one item only, so k should be simply compared to it,
as is indeed done at the end of the function. If, on the other hand, n > 1, then
the inner question is invoked to form the induction step and decide whether
the recursive call should apply to the first subarray,

a[0], a[1], a[2], . . . , a[(n + 1)/2− 1],

or to the second subarray,

a[n/2], a[n/2 + 1], a[n/2 + 2], . . . , a[n− 1].

In other words, the inner question decides whether the algorithm should pro-
ceed to the left or right subtree in Figure 14.1.

Let us use the above code to check whether a given natural number has a
rational square root or not. As discussed in Chapter 4, Section 4.5, a natural
number may have either a natural square root or an irrational square root. In
other words, a natural number k may have a natural square root only if it is
of the form

k = i2

for some natural number i; otherwise, its square root must be irrational.
Let us list the natural numbers of the form i2 in the array a:
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a[0] = 0
a[1] = 1
a[2] = 4
a[3] = 9
· · ·
a[i] = i2

· · · .

Then, k may have a natural square root only if it lies in the array a. Because
the items are ordered in a in an increasing order, the ”findInArray()” function
can be used to check whether k indeed lies in a, and, hence, has a natural
square root, or doesn’t lie in a, and, hence, must have an irrational square
root:

#include<stdio.h>

int main(){
int n;
printf("length=");
scanf("%d",&n);
int a[n];
for(int i=0; i<n; i++)
a[i] = i*i;

int k;
printf("input number=");
scanf("%d",&k);
if(findInArray(n,a,k))
printf("%d is the square of a natural number\n",k);

else
printf("%d is the square of an irrational number\n",k);

return 0;
}

14.6 Binary Representation

Here we show how useful recursion can be to produce the binary represen-
tation of a natural number n, namely, the unique representation of n as a
polynomial in the base 2:

n =
blog2 nc∑

i=0

ai2i,
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where the coefficient ai is either 0 or 1 (see Chapter 12, Section 12.6).
Unfortunately, this formula is not easy to implement using loops; indeed,

the sequence of coefficients ai must be reversed and reversed again in the code
in Chapter 13, Section 13.25 before the binary representation is obtained. The
recursive implementation, on the other hand, is much more natural, because
it is based on the following mathematical induction:

n = 2(n/2) + (n%2),

where n/2 means integer division, with residual n%2. This formula is now
translated into a recursive computer code, to produce the required binary
representation of n:

int binary(int n){
return n>1 ? 10*binary(n/2)+n%2 : n%2;

} /* binary representation */

14.7 Pascal’s Triangle

As we’ve seen in Chapter 10, Section 10.9, Pascal’s triangle can be viewed as
a multilevel object defined by mathematical induction. Although the present
implementation avoids recursive functions to save the extra cost they require,
it still uses the original mathematical induction implicitly in the nested loop
used to produce the binomial coefficients.

More specifically, Pascal’s triangle is embedded in the lower-left part of a
two-dimensional array (see Figure 14.2). This way, it is rotated in such a way
that its head lies in the bottom-left corner of the two-dimensional array.

The following implementation is based on the original mathematical defini-
tion in Chapter 10, Section 10.9:

#include<stdio.h>
int main(){
const int n=8;
int triangle[n][n];
for(int i=0; i<n; i++)
triangle[i][0]=triangle[0][i]=1;

for(int i=1; i<n-1; i++)
for(int j=1; j<=n-1-i; j++)
triangle[i][j] = triangle[i-1][j]+triangle[i][j-1];

return 0;
} /* filling Pascal’s triangle */
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rotated Pascal triangle
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FIGURE 14.2: Pascal’s triangle rotated in such a way that its head lies in the
lower-left corner of the two-dimensional array.

14.8 Arithmetic Expression

As we’ve seen in Chapter 10, Section 10.5, an arithmetic expression can be
viewed as a binary tree, with the least-priority arithmetic symbol in its head,
more and more prior arithmetic symbols in its nodes, and numbers in its leaves
(see Figure 10.6). As a matter of fact, this is a recursive (or inductive) form:
the least-priority arithmetic symbol divides the entire arithmetic expression
into two subexpressions that are placed in the left and the right subtrees.

Here we use this observation to implement an algorithm that reads an arbi-
trarily long arithmetic expression, prints it in the postfix and prefix formats,
and calculates its value.

The postfix (respectively, prefix) format of a binary arithmetic expression
places the arithmetic symbol before (respectively, after) its two arguments.
For example, the arithmetic expression 2 + 3 has the postfix format +23 and
the prefix format 23+. (No parentheses are used.)

These tasks are carried out recursively as follows. The original arithmetic
expression is stored in a string or an array of digits and arithmetic symbols
like ’+’, ’-’, etc. This string is fed as an input into the function ”fix()” that
carries out the required task, may it be printing in prefix or postfix format or
calculating the value of the arithmetic expression.

In the ”fix()” function, the string is scanned in the reversed order (from
right to left). Once an arithmetic symbol of least priority is found, the original
string is split into two substrings, and the function is applied recursively to
each of them (see Figure 14.3).

To implement this process, we first need to write a preliminary function
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3 · 7 12/3

+”fix()”

recursive call to ”fix()”

FIGURE 14.3: The ”fix()” function calculates 3 · 7 + 12/3 by scanning this
expression backward until the least-priority symbol ’+’ is found and splitting the

original expression into the two subexpressions 3 · 7 and 12/3, which are then
calculated recursively separately and added to each other.

that copies the first ’n’ characters from a string ’s’ to a string ’t’:

#include<stdio.h>
void copy(char* t, char* s, int n){
for(int i=0;i<n;i++)
t[i]=s[i];

t[n]=’\n’;
} /* copy n first characters from s to t */

The function ”fix()” defined below carries out one of three possible tasks:
printing in postfix format, printing in prefix format, or computing the value
of the arithmetic expression. The particular task to be carried out is specified
by the third (and last) argument of the function, the integer ”task”.

The argument ”task” may have three possible values to indicate the partic-
ular task that is carried out. If ”task” is zero, then the task is to print in the
postfix format. If, on the other hand, ”task” is one, then the task is to print
in the prefix format. Finally, if ”task” is two, then the task is to calculate the
value of the arithmetic expression.

The first two arguments in the ”fix()” function are of type string (pointer-to-
character) and integer. The first argument contains the arithmetic expression,
and the second argument contains its length (number of characters).

When the argument ”task” is either zero or one, the characters in the orig-
inal string are printed (in the postfix or prefix format) onto the screen using
the standard ”printf” function, with the symbol ”%c” to indicate a variable of
type character. Here is the complete implementation of the ”fix()” function:

int fix(char* s, int length, int task){

This is the loop that scans the original string backward (from the last char-
acter to the first one):
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for(int i=length-1;i>=0;i--)

In this loop, we look for the least-priority arithmetic operation. Clearly, if the
symbol ’+’ or ’-’ is found, then this is the required least-priority symbol, at
which the original expression ’s’ should be split into the two subexpressions
”s1” and ”s2”:

if((s[i]==’+’)||(s[i]==’-’)){
char s1[i+1];
char s2[length-i];

Here the first subexpression is copied from ’s’ to ”s1”:

copy(s1,s,i);

Then, pointer arithmetic (as in Chapter 13, Section 13.29) is used to locate
the end of the first subexpression in ’s’, and then the second subexpression is
copied from ’s’ to ”s2”:

copy(s2,s+i+1,length-i-1);

Now, the present task (which depends on the particular value of the argument
”task”) is applied recursively to each subexpression. First, it is assumed that
”task” is two, so the task is to calculate the arithmetic expression:

if(task==2){
if(s[i]==’+’)
return fix(s1,i,task) + fix(s2,length-i-1,task);

else
return fix(s1,i,task) - fix(s2,length-i-1,task);

}

Next, it is assumed that ”task” is zero, so the task is to print in the postfix
format. This is why the present symbol, may it be ’+’ or ’-’, is printed before
the recursive calls:

if(task==0)printf("%c",s[i]);
fix(s1,i,task);
fix(s2,length-i-1,task);

Next, it is assumed that ”task” is one, so the task is to print in the prefix
format. In this case the present symbol, may it be ’+’ or ’-’, is printed after
the recursive calls:

if(task==1)printf("%c",s[i]);

The rest of the work will now be done in the recursive calls, so the original
call can safely terminate:
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return 0;
}

If, however, there is no ’+’ or ’-’ in the original string, then we must use
another loop to look for a symbol that stands for an arithmetic operation of
the next priority, ’%’:

for(int i=length-1;i>=0;i--)
if(s[i]==’%’){
char s1[i+1];
char s2[length-i];
copy(s1,s,i);
copy(s2,s+i+1,length-i-1);
if(task==2)
return fix(s1,i,task) % fix(s2,length-i-1,task);

if(task==0)printf("%c",s[i]);
fix(s1,i,task);
fix(s2,length-i-1,task);
if(task==1)printf("%c",s[i]);
return 0;

}

If, however, there is also no ’%’ in the original string, then we must use yet
another loop to look for symbols that stand for arithmetic operations of the
highest priority, ’*’ and ’/’:

for(int i=length-1;i>=0;i--)
if((s[i]==’*’)||(s[i]==’/’)){
char s1[i+1];
char s2[length-i];
copy(s1,s,i);
copy(s2,s+i+1,length-i-1);
if(task==2){
if(s[i]==’*’)
return fix(s1,i,task) * fix(s2,length-i-1,task);

else
return fix(s1,i,task) / fix(s2,length-i-1,task);

}
if(task==0)printf("%c",s[i]);
fix(s1,i,task);
fix(s2,length-i-1,task);
if(task==1)printf("%c",s[i]);
return 0;

}

Finally, if there are no arithmetic symbols in the string at all, then we must
have reached an innermost recursive call applied to a trivial subexpression (in

© 2009 by Taylor and Francis Group, LLC



296 CHAPTER 14. RECURSION

the very bottom of the binary tree, that is, in one of the leaves in Figure 10.6),
which contains one number only. This is why the string must be scanned once
again, and this time we look for digits, which are either combined to form and
return a natural number (if ”task” is two)

if(*s == ’\n’){
printf("error");
return 0;

}
if(task==2){
int sum=0;
int exp=1;
for(int i=length-1;i>=0;i--){
if((s[i]>=’0’)&&(s[i]<=’9’)){
sum += (s[i]-’0’) * exp;
exp *= 10;

}
else{
printf("error");
return 0;

}
}
return sum;

}

or printed onto the screen (if ”task” is either zero or one):

for(int i=0;i<length;i++){
if((s[i]>=’0’)&&(s[i]<=’9’))
printf("%c",s[i]);

else{
printf("error");
return 0;

}
}
return 0;

} /* calculate or print in prefix/postfix format */

This completes the ”fix()” function that calculates an arbitrarily long arith-
metic expression or prints it in the postfix or prefix format.

Here is the ”main()” function that reads the arithmetic expression [using
the standard ”getchar()” function to read each individual character], prints
it in its prefix and postfix formats, and calculates it:

int main(){
char s[80];
int i;
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for(i=0; (s[i]=getchar()) != ’\n’; i++);

Although this ”for” loop is empty (contains no instruction), it still manages to
read the entire arithmetic expression from the screen character by character.
Indeed, the standard ”getchar()” function invoked in the header reads the next
input character from the screen, which is then placed in the next available
character in the string ’s’. Thanks to the fact that the index ’i’ is defined
before the loop, it continues to exist after it as well, and contains the length
of ’s’ (the number of characters in it) for further use in the calls to the ”fix()”
function:

fix(s,i,0);
printf("\n");
fix(s,i,1);
printf("\n");
printf("%d\n",fix(s,i,2));
return 0;

}

To run this program, all the user needs to do is to type the original arithmetic
expression onto the screen and hit the ”return” key on the keyboard.

14.9 Static Variables

As discussed above, a variable that is defined inside the block of a function
(a local variable) disappears when the function terminates with no trace. Still,
it may be saved by declaring it as ”static”. For example, if we wrote in the
above ”fix()” function

static FILE* fp = fopen("writeFile","w");
fprintf(fp,"length of subexpression=%d\n",length);

then the length of the original arithmetic expression, as well as the lengths of
all the subexpressions, would be printed onto the file ”writeFile”.

Here ”fp” is a pointer to a static file variable rather than to a local file
variable. This file is created and initialized at the first time the function is
called, and exists throughout the entire run. This is why data from all the
calls to the function, including subsequent recursive calls, are printed on it
continuously.
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14.10 The Exponent Function

In this section, we define the exponent function exp(x) (or ex), defined by

ex ≡ 1 + x +
x2

2!
+

x3

3!
+

x4

4!
+ · · · =

∞∑
n=0

xn

n!
.

This infinite series is called the Taylor expansion of the exponent function
around x = 0.

Although the exponent function is available in the standard ”math.h” li-
brary, we implement it here explicitly as a good exercise in using loops and
recursion. Furthermore, the present implementation can be extended to com-
pute the exponent of a square matrix (Chapter 16, Section 16.18 below).

We approximate the exponent function by the truncated Taylor series (or
the Taylor polynomial)

TK(x) =
K∑

n=0

xn

n!
.

Here, K is some predetermined integer, say K = 10.
The Taylor polynomial TK is a good approximation to the exponent func-

tion when x is rather small in magnitude. When x is large in magnitude,
exp(x) can still be approximated by picking a sufficiently large integer m in
such a way that x/2m is sufficiently small in magnitude and approximating

exp(x) = exp(x/2m)2
m

by
exp(x) .= (TK(x/2m))2

m

.

This formula is implemented in the function ”expTaylor(arg)”, which calcu-
lates the exponent of its argument ”arg”:

double expTaylor(double arg){
const int K=10;
double x=arg;

First, we need to find an appropriate integer m. For this, the function uses a
local variable ’x’, which initially has the same value as the argument ”arg”,
and is then divided successively by 2 m times. This is done in a loop in which
x is successively divided by 2 until its magnitude is sufficiently small, say
smaller than 0.5. The total number of times x has been divided by 2 is the
value assigned to m:

int m=0;
while(abs(x)>0.5){
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x /= 2.;
m++;

}

As a matter of fact, this loop can be viewed as a recursive process to realize
the recursive formula

x/2m =
{

x if m = 0(
x/2m−1

)
/2 if m > 0,

as can be proved easily by mathematical induction on m = 0, 1, 2, 3, . . .. This
recursion is indeed implemented in the above loop.

Once x has been divided by 2m, its magnitude is sufficiently small. There-
fore, we can return to the evaluation of the Taylor polynomial TK(x). This
can be done most efficiently in the spirit of Horner’s algorithm:

TK(x) =
(
· · ·
((( x

K
+ 1
) x

K − 1
+ 1
)

x

K − 2
+ 1
)
· · ·
)

x + 1.

More precisely, this formula should actually be rewritten as a recursive for-
mula. To do this, define for 0 ≤ i ≤ k the polynomial of degree k − i

Pk,i(x) ≡ i!
xi

k∑
j=i

xj

j!
.

Clearly, the first term in this polynomial is the constant 1. Furthermore, when
i = k, the polynomial reduces to a polynomial of degree 0 (or merely a con-
stant):

Pk,k(x) ≡ 1.

Moreover, when i = 0, we obtain the original polynomial Tk:

Pk,0(x) = Tk(x).

Let us now design a recursive formula to lead from the trivial case i = k to
the desirable case i = 0:

Pk,i−1(x) = 1 +
x

i
Pk,i(x).

Indeed, by mathematical induction on i = k, k − 1, k − 2, . . . , 2, 1, we have

Pk,i−1(x) =
(i− 1)!
xi−1

k∑
j=i−1

xj

j!

= 1 +
(i− 1)!
xi−1

k∑
j=i

xj

j!

= 1 +
x

i
· i!
xi

k∑
j=i

xj

j!

= 1 +
x

i
Pk,i(x).
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The implementation of this formula uses a loop with a decreasing index i =
k, k− 1, . . . , 2, 1, in which the variable ”sum” takes the initial value Pk,k = 1,
before being successively multiplied by x/i and incremented by 1:

double sum=1.;
for(int i=K; i>0; i--){
sum *= x/i;
sum += 1.;

}

Once this loop has been complete, the local variable ”sum” has the value
TK(arg/2m). The required output, the 2m-power of TK(arg/2m), is obtained
from a third loop of length m, in which ”sum” is successively replaced by its
square:

for(int i=0; i<m; i++)
sum *= sum;

return sum;
} /* calculate exp(arg) using Taylor series */

As a matter of fact, this loop can also be viewed as a recursive process to
realize the recursive formula

sum2i

=

{
sum if i = 0(

sum2i−1
)2

if 0 < i ≤ m,

as can be proved easily by mathematical induction on i = 0, 1, 2, 3, . . . m.
This recursion is indeed implemented in the above loop to make the required
substitution

sum← sum2m

,

or
Tk(arg/2m)← (Tk(arg/2m))2

m

,

which is the required approximation to ex.

14.11 Exercises

1. Use mathematical induction on n to prove the correctness of the code in
Section 14.5.

2. Run the code in Section 14.5 to check whether a given natural number k is
also the square of some natural number i (for which k = i2). (To run the
code, first enter some number n > k to serve as the length of the array,
then hit the ”return” key on the keyboard, then enter k, and then hit the
”return” key once again.)
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3. Modify the code in Section 14.6 to produce the representation of an integer
number in base ”base”, where ”base” is another integer argument.

4. Run the code in Section 14.7 that constructs Pascal’s triangle and verify
that the number in cell (k, l) is indeed Newton’s binomial coefficient(

k + l
k

)
.

Furthermore, calculate the sum of the entries along the nth diagonal
{(k, l) | k + l = n}, and verify that it is indeed equal to

n∑
k=0

(
n
k

)
=

n∑
k=0

(
n
k

)
1k1n−k = (1 + 1)n = 2n.

5. Use recursion to write a function that prints the prime factors of an arbi-
trarily large integer number (Chapter 1, Section 1.14). The solution can
be found in Section 28.2 in the appendix.

6. Use recursion to implement Euclid’s algorithm to find the greatest com-
mon divisor of two natural numbers m and n (m > n) (Chapter 1, Section
1.16). The solution can be found in Section 28.3 in the appendix.

7. Use mathematical induction on m to show that the above code indeed
works.

8. Use recursion to implement the function

Ca,n =
a!

(a− n)!

(where a and n are nonnegative integers satisfying a ≥ n) defined in
Chapter 10, Section 10.17. The solution can be found in Section 28.4 in
the appendix.

9. Modify the code in Section 14.8 so that the results are printed to a static
file defined in the ”fix()” function.

10. Modify the code in Section 14.8 to read arithmetic expressions with paren-
theses and also print them in the prefix and postfix forms with parentheses.

11. Compare the results of the functions in Section 14.10 to the result of the
”exp(x)” function available in the ”math.h” library.

12. The sine function sin(x) has the Taylor expansion

sin(x) = x− x3

3!
+

x5

5!
− x7

7!
+ · · · =

∞∑
n=0

(−1)n x2n+1

(2n + 1)!
.

Modify the above ”expTaylor” function to produce the ”sinTaylor” func-
tion, which computes sin(x) for a given real number x. Compare the results
of this function to those of the ”sin(x)” function, available in the ”math.h”
library.
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13. The cosine function cos(x) has the Taylor expansion

cos(x) = 1− x2

2!
+

x4

4!
− x6

6!
+ · · · =

∞∑
n=0

(−1)n x2n

(2n)!
.

Modify the above ”expTaylor” function to produce the ”cosTaylor” func-
tion, which computes cos(x) for a given real number x. Compare the
results of this function to those of the ”cos(x)” function, available in the
”math.h” library.

14. Use the above Taylor expansions to show that, for a given imaginary
number of the form ix (where i =

√
−1 and x is some real number),

exp(ix) = cos(x) + i · sin(x).
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Introduction to C++

C++ is built on top of C in the sense that every reserved word (keyword) in C
is available in C++ as well. This includes if-else conditions, loops, numerical
types such as ”int” and ”double”, logic and arithmetic operations, etc. Thus,
C++ enjoys all the good features in C.

Furthermore, C++ gives the programmer the opportunity to define new
objects, to be used later as if they were standard types [8] [26]. In this sense,
C++ is a dynamic language, which can be enriched by the programmer to
support more and more types.

The focus in C++ is on the objects rather than on the algorithms or the
applications that use them. The purpose of the program is to introduce new
objects and the functions associated with them. These objects can then be
used in the present application as well as in other applications solved by other
users who have permission to access to them.

Together with the objects, the programmer can also define operators to
manipulate them. Once these operators are well defined, the objects can be
treated in much the same way as in the original mathematical formulas. This
feature has not only a practical value to help implementing algorithms in the
same spirit as in their original mathematical formulation, but also a theoretical
value to help thinking about the mathematical objects in their original format
and continue developing the mathematical theory associated with them.

Thus, an object-oriented programming language such as C++ serves not
only as a mere tool to communicate with the computer, but also as a mech-
anism to enrich the programmer’s world of thoughts, give them more insight
about what they are doing, and preserve a constant contact between their the-
oretical knowledge and their practical work. After all, this is the main purpose
of any language, may it be formal or human: to communicate not only with
others, but also with one’s own mind, to express ideas in terms of suitable
objects.
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Objects

As discussed above, C may be viewed as a function-oriented programming
language: each command in C is also a function that returns a temporary
variable, which can be used in the same code line. Furthermore, the pro-
grammer may define his/her own functions, which take input as arguments to
produce and return an output.

An object-oriented programming language such as C++, on the other hand,
focuses on the objects rather than on the functions that use them. Indeed, once
mathematical objects are well defined, including the operators and functions
that manipulate them, the programmer and other users who have permission
to access them can use them as if they were standard numerical types available
in C. Furthermore, the objects can then be used in much the same spirit as
in their original mathematical formulation, without bothering with technical
details such as storage.

Once the mathematical objects are well implemented, they can be placed
in a library of objects. Every user who has permission to access this library
can then use them to define more complicated composite objects. This may
form a hierarchy of libraries of more and more complex objects, to enrich the
programming language and give future users proper tools not only to realize
their mathematical ideas and algorithms in a practical way but also to think
about them and keep developing and improving them.

15.1 Classes

A new object in C++ is defined in a class. The class contains a header
with the object name, followed by a block (the class block), in which data
fields that belong to the object are declared, and functions associated with
the object are declared and defined.

Suppose, for example, that the programmer wants to implement a point in
the two-dimensional Cartesian plane to be used by any user as if it were a stan-
dard type in C, with no need to bother with any implementation detail such as
storage or arithmetic operations. This would indeed make the programming
language richer, and would free the mind of the user to concentrate on his/her

307
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particular application or algorithm.
In particular, users should be able to write commands like

point P;
point Q=P;

to define a point ’P’ and use it to initialize another point ’Q’, exactly as one
can do with numerical types such as ”int” and ”double” in C. As we’ll see
below, this objective can indeed be achieved by defining a ”point” class with
its interface functions that can be called by any user.

15.2 Private and Public Members

Here is how a class can be used to define a new object in C++:

class point{
public:
double x;
double y; // not object oriented

};

The symbol ”//” indicates the start of a comment line, which is skipped and
ignored by the C++ compiler. Here, the comment tells us that this is not a
good object-oriented programming.

Indeed, the block of the ”point” class above contains two data fields of
type ”double”, ’x’ and ’y’, to store the x and y coordinates of a point object.
Unfortunately, the reserved word ”public” before these fields implies that they
are public in the sense that they can be accessed and even changed by the
user. In fact, a user who defines a point object ’P’ can access (and indeed
change) its coordinates by writing ”P.x” and ”P.y”.

This is not what we want in object-oriented programming. In fact, we want
the user to deal with (and indeed think about) the point object as a complete
unit, and never deal directly with its private coordinates. This way, the user’s
mind will be free to really benefit from the point object and its properties in
analytic geometry.

It is more in the spirit of object-oriented programming to declare the data
fields ’x’ and ’y’ as private (not accessible to users) by placing the word ”pub-
lic” after their declarations in the class block. This way, point objects will be
protected from any inadvertent change by inexperienced users. Furthermore,
the programmer who has written the original ”point” class will be able to
modify it whenever necessary, with no need to alert users about this. In fact,
the users will remain completely unaware of any change in the implementa-
tion, and won’t have to change their code at all.
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The default in C++ is that fields are private unless declared otherwise. To
make the above code a more object-oriented code, it is sufficient to place the
reserved word ”public” after rather than before the ’x’ and ’y’ fields. This
way, only the functions that follow the word ”public” are accessible to users,
but not the ’x’ and ’y’ fields that appear before it:

class point{
double x;
double y; // object-oriented implementation

public:

This way, a user who defines a point object ’P’ can no longer access its coordi-
nates simply by writing ”P.x” or ”P.y”. Still, the programmer of the ”point”
class may give users permission to read the ’x’ and ’y’ coordinates through
public interface functions as follows:

double X() const{
return x;

} // read x

double Y() const{
return y;

} // read y

This way, the user can write ”P.X()” or ”P.Y()” to invoke the public interface
functions ”X()” or ”Y()” to read the ’x’ or ’y’ coordinate of the point object
’P’. Thanks to the reserved word ”const” before the blocks of these functions,
the point object ’P’ with which they are called (referred to as the current
object or variable) is protected from any change through these functions:
they can only read a datum, but not change it. In fact, any attempt to
change any data field in the current object would invoke a compilation error,
to alert the programmer about an inadvertent change.

Furthermore, the calls ”P.X()” and ”P.Y()” are not more expensive than
the corresponding calls ”P.x” and ”P.y” in the original (bad) implementation.
Indeed, the functions contain only one command line each, and create no new
objects.

Still, the programmer may elect to give users permission even to change
data fields in a careful and well-controlled way:

void zero(){
x=y=0.;

} // set to zero
};

This way, the user can writ ”P.zero()” to set the point ’P’ to zero. Note that
the ”zero()” function lacks the word ”const” before its block to allow changing
the current point object and sets it to zero.
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The symbols ”};” complete the block of the class. Before these symbols,
the programmer may add more public functions for users to call with their
own ”point” objects. Furthermore, the programmer might want to write the
reserved word ”private:” and also add private functions before the end of the
class block for his/her own use only.

15.3 Interface Functions

The advantage of interface functions like ”X()”, ”Y()”, and ”zero” is in the
opportunity to modify them at any time (with no need to notify the users),
provided that they still take the same arguments and return the same out-
put as before. In fact, the users remain completely unaware of the particular
implementation or of any change in it. All they need to know is how to call
the interface functions. In fact, they can think of a ”point” variable like ’P’
indeed as a point in the two-dimensional Cartesian plane. The interface func-
tions associated with it can also be thought of as operations on points in the
Cartesian plane, in the spirit of their original mathematical interpretation.

As we’ve seen above, interface functions are often placed inside the class
block, right after the definitions of data fields. This style is suitable for short
functions that contain a few code lines only. These functions are then recom-
piled every time the function is called.

A more efficient style, which is suitable for longer functions as well, only
declares the function inside the class block, leaving its actual definition until
later. The definition is placed outside the class block, with the function name
preceded by a prefix containing the class name followed by the symbol ”::”,
to indicate that this is indeed an interface function from this class. This way,
the definition is treated as if it were inside the class block. For example, the
”point” class could have been written equivalently as follows:

class point{
double x;
double y;

public:
double X() const;
double Y() const; // declarations only
void zero();

};

This completes the class block. The three interface functions declared in it are
now defined in detail. In these definitions, the function name is preceded by
the prefix ”point::” to indicate that this is a definition of an interface function
declared in the block of the ”point” class:
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double point::X() const{
return x;

} // definition of X()

double point::Y() const{
return y;

} // definition of Y()

void point::zero(){
x=y=0.;

} // definition of "zero()"

This way, each definition is compiled only once to create a finite state machine
(automaton). This machine is then invoked every time the function is called,
with the concrete arguments that are passed to it as input and the returned
value as output.

The prefix ”point::” may actually be viewed as an operator that “transfers”
the definition back into the class block. This somewhat more complicated
style, however, is unnecessary in the present ”point” example, which uses
short definitions only. The original style, in which the complete definitions
are placed inside the class block, is therefore preferable.

15.4 Information and Memory

The dilemma whether to compile a function once and for all and store the
resulting state machine (or automaton) in the memory for further use or to
recompile it over and over again each and every time it is called is analogous
to the dilemma whether to remember mathematical formulas by heart or
to reformulate them whenever needed. Consider, for example, the algebraic
formula

(a + b)2 = a2 + 2ab + b2.

Because it is so useful, most of us know this formula by heart in an easily
accessed part of our brains. Still, it occupies valuable memory, which could
have been used for more vital purposes. Wouldn’t it be better to release this
valuable memory, and reformulate the formula whenever needed?

(a + b)2 = (a + b)(a + b)
= a(a + b) + b(a + b)
= a2 + ab + ba + b2

= a2 + 2ab + b2.

© 2009 by Taylor and Francis Group, LLC



312 CHAPTER 15. OBJECTS

After all, this way we’d train our brains in using the logics behind the formula,
and also realize that it holds only in mathematical rings that support the
distributive and commutative laws.

Still, memorizing the formula by heart also has its own advantage. Indeed,
this way the formula itself becomes an individual object in the mathematical
world. As such, it can be placed in any trees used to prove any mathematical
theorem.

For a trained mathematician there is probably not much difference between
these two approaches. In fact, the formula becomes an integral part of his/her
vocabulary, to be used in many mathematical proofs. Furthermore, it goes
hand in hand with its own proof, using the distributive and commutative
laws. This is indeed an object-oriented thinking: the formula is an object in
its own right, which contains yet another abstract object in it: its proof.

In the above approach, the formula becomes an object in one’s immediate
mathematical language, with its own interpretation or proof. There is, how-
ever, a yet better and more insightful approach: to use an induction process to
place the formula in a more general context. Indeed, the formula corresponds
to the second row in Pascal’s triangle (Chapter 10, Section 10.9). By study-
ing the general framework of Pascal’s triangle and understanding the reason
behind it (the induction stage), we not only obtain the above formula as a
special case (the deduction stage, Chapter 10, Section 10.1), but also develop
a complete theory, with applications in probability and stochastics as well
(Chapter 10, Sections 10.9–10.14).

15.5 Constructors

We want the user to be able to define a point object simply by writing

point P;

Upon encountering such a command, the C++ compiler looks in the class
block for a special interface function: the constructor. Thus, the programmer
of the ”point” class must write a proper constructor in the class block to
allocate the required memory for the data fields in every ”point” object defined
by the user.

If no constructor is written, then the C++ compiler invokes its own default
constructor to allocate memory for the data fields and initialize them with
random values. Still, the programmer is well advised to write his/her own
explicit constructor, not only to define the data fields but also to initialize
them with suitable values.

The constructor must be a public interface function available to any user.
The name of the constructor function must be the same as the name of the
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class. For example, the programmer could write in the block of the ”point”
class a trivial empty constructor, also referred to as the default constructor:

point(){
} // default constructor

Upon encountering a command like ”point P;”, the compiler would then invoke
this constructor to allocate memory to the ”double” data fields ”P.x” and
”P.y” (in the order in which they appear in the class block) and to initialize
them with random values.

The above compiler, however, is too trivial. In fact, it only does what the
default constructor available in the C++ compiler would do anyway. It is
therefore a better idea to write a more sophisticated constructor, which not
only allocates memory for the data fields but also initializes them with more
meaningful values:

point(double xx,double yy){
x=xx;
y=yy;

}

Indeed, with this constructor, the user can write commands like

point P(3.,5.);

to define a new point object ’P’ with the x-coordinate 3 and the y-coordinate
5.

15.6 Initialization List

The above constructor first initializes the data fields ’x’ and ’y’ with mean-
ingless random values, and then assigns to them the more meaningful values
passed to it as arguments. This is slightly inefficient; after all, it would make
more sense to initialize the data fields with their correct values immediately
upon definition. This can indeed be done by using an initialization list as
follows:

point(double xx, double yy):x(xx),y(yy){
} // constructor with initialization list

The initialization list follows the character ’:’ that follows the list of arguments
in the header of the constructor. The initialization list contains the names of
data fields from the class block, separated by commas. Each data field in the
initialization list is followed by the value with which it is initialized (in round
parentheses). This way, when the compiler encounters a command like
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point P(3.,5.);

it initializes the data fields ”P.x” and ”P.y” immediately with their correct
values 3 and 5, respectively. The order in which the data fields are defined
and initialized is the order in which they appear in the class block.

15.7 Default Arguments

Better yet, the constructor may also assign default values to its local
(dummy) arguments:

point(double xx=0.,double yy=0.):x(xx),y(yy){
} // arguments with default values

This way, if no concrete arguments are passed to the constructor, then its
local arguments ”xx” and ”yy” take the zero value. This value is then used
to initialize the data fields ’x’ and ’y’ in the initialization list. Thus, if the
compiler encounters a command like

point P;

then it constructs the point object ’P’= (0, 0) (the origin in the Cartesian
plane). Thus, there is no longer a need to write a default constructor in the
block of the ”point” class; the above constructor serves as a default constructor
as well.

Furthermore, if the compiler encounters a command like

point P(3.); // or: point P = 3.;

then it assumes that the second local argument, ”yy”, whose value is missing,
takes the default zero value. Thus, it constructs the point object ’P’(3, 0).

15.8 Explicit Conversion

The constructor defined above can also serve as an explicit-conversion oper-
ator from type ”double” to type ”point”. Indeed, when the compiler encoun-
ters code like ”point(3.)” or ”(point)3.”, it invokes the constructor as in the
above example to produce the temporary ”point” object (3, 0).
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15.9 Implicit Conversion

When the compiler expects a ”point” object but encounters a ”double”
number instead, it invokes the above constructor implicitly to convert the
”double” object into the required ”point” object. This feature is particularly
useful in functions that take ”point” arguments. Indeed, when a ”double”
concrete argument is passed to such a function, it is converted implicitly
into the required ”point” object before being assigned to the dummy ”point”
argument used throughout the function.

Implicit conversion has advantages and disadvantages. On one hand, it may
make code more transparent and straightforward; on the other hand, it may
be rather expensive.

Indeed, implicit conversion uses an extra call to the constructor, which re-
quires extra time and storage. Although this overhead is rather negligible, it
may easily accumulate into a more significant overhead when implicit conver-
sion is repeated in long loops or when objects that are much bigger than the
present ”point” are converted.

To avoid implicit conversion altogether, one could just decline to specify
default values for the dummy arguments, as in the original version in Section
15.6:

point(double xx, double yy):x(xx),y(yy){
} // constructor with no implicit conversion

This way, the compiler would never invoke the constructor to convert implic-
itly a ”double” object into a ”point” object. The user would have to do this
explicitly wherever necessary, and to pass ”point” arguments to functions that
expect them.

15.10 The Default Copy Constructor

Users of the ”point” class may also wish to initialize a new ”point” object
to be the same as an existing one. For example, they may want to write code
like

point P(3.,5.);
point Q(P); // or point Q=P;

to initialize the point ’Q’ to be the same as ’P’. This is done by the copy
constructor, defined in the class block.

The copy constructor constructs (allocates memory for) a new object and
initializes it with the value of the object that is passed to it as a concrete
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argument. The memory allocation and initialization of the particular data
fields is done in the order in which they appear in the class block. In the
above example, the x-coordinate of ’Q’ is allocated memory and initialized to
be the same as the x-coordinate of ’P’, and then the y-coordinate of ’Q’ is
allocated memory and initialized to be the same as the y-coordinate of ’P’.

If no copy constructor is defined in the class block, then the compiler invokes
the default copy constructor available in it. This constructor just allocates the
required memory for each data field in the constructed object and initializes it
with the corresponding data field in the argument. Loosely speaking, we say
that the data fields are copied from the argument to the constructed object,
or that the entire concrete argument is copied.

Still, the programmer is well advised to write his/her own copy constructor
in the class block, and not rely on the default copy constructor available in the
C++ compiler, which may do the wrong thing. We’ll return to this subject in
Section 15.20.

The copy constructor is invoked implicitly every time an object is passed
to a function by value. Indeed, the local (dummy) object must be constructed
and initialized to be the same as the concrete argument. Loosely speaking,
the concrete argument is ”copied” by the copy constructor to the local object
used in the function block only.

Consider, for example, the following ordinary (noninterface) function, writ-
ten outside of the class block:

const point negative(const point p){
return point(-p.X(),-p.Y());

}

When the compiler encounters a call of the form ”negative(P)” for some well-
defined ”point” object ’P’, it first invokes the copy constructor to copy the
concrete object ’P’ into the dummy object ’P’ used in the function block, then
it invokes the constructor in Section 15.7 to construct −P as in the function
block, and finally it invokes the copy constructor once again to copy −P into
the constant temporary ”point” object returned by the function, as indicated
by the words ”const point” at the beginning of the header of the function.

This seems to be a rather expensive process. Fortunately, some compilers
support a compilation option that avoids the third construction. Furthermore,
in Section 15.19, we’ll see how the concrete argument can be passed by ref-
erence rather than by value to avoid the first call to the copy constructor as
well.

The ”negative” function returns a temporary (unnamed) ”point” variable
that exists only in the command line in which the call is made and disappears
soon after. Why is this variable declared as constant in the beginning of the
header of the function?

Temporary variables have no business to change, because they disappear
anyway at the end of the present command line. Declaring them as constants
protects them from inadvertent changes.
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Indeed, a nonconstant temporary object can serve as a current object asso-
ciated with an interface function, even when it could change there. However,
it cannot be passed by address as a concrete argument to a function that could
change it: the C++ compiler would refuse to create a local pointer that points
to a nonconstant temporary object, out of fear that it would change in the
function, which makes no sense because it is going to disappear anyway at
the end of the command line in which the call is made. The compiler would
therefore suspect that this isn’t the real intention of the programmer, and
would therefore issue a compilation error to alert him/her.

For example, the nonconstant temporary object ”point(1.)” returned by the
constructor of the ”point” class cannot be passed by address to any function
with a pointer-to-(nonconstant)-point argument, out of fear that it would
undergo changes that make no sense.

Declaring the temporary object returned from the ”negative” function as a
constant (by placing the reserved word ”const” at the beginning of the header
of the function) solves this problem. Indeed, since this temporary object is
constant, there is no fear that it would change inadvertently by any function,
may it be an interface or an ordinary function. It may thus serve not only
as a current object in an interface function but also as a concrete argument
(passed either by value or by address, with either a constant or a nonconstant
local pointer) in any function.

Note also that the above ”negative()” function can also be called with
a ”double” argument, e.g., ”negative(1.)” or ”negative(a)”, where ’a’ is a
”double” variable. Indeed, in such calls, the ”double” argument is converted
implicitly into a temporary ”point” object before being used as a concrete
argument in the ”negative” function.

15.11 Destructor

At the end of the block of a function, the local variables are destroyed,
automatically, and the memory that they occupy is released for future use.
This is done by the destructor function, invoked implicitly by the compiler.

If no destructor is defined in the class block, then the default destructor
available in the C++ compiler is invoked. This destructor goes over the data
fields in the object that should be destroyed, and removes them one by one,
in the reversed order to the order in which they appear in the class block. For
example, in a ”point” object, the ’y’ data field is removed before the ’x’ data
field.

The default destructor, however, does not always do the right thing. It is
thus advisable to write an explicit destructor in the class block as follows:

~point(){
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} // default destructor

This destructor has an empty block, because everything is done implicitly.
Indeed, at the ’}’ symbol that marks the end of the block, the data fields in
the current object with which the destructor is called are destroyed one by
one in the backward order: first the ’y’ field, and then the ’x’ field. Thus,
this destructor works precisely as the default destructor available in the C++
compiler. This is why it is also referred to as the default destructor. In fact,
it makes no difference whether it is written or not: in either case the compiler
would use the same method to destroy an old object that is no longer needed.

The default destructor is good enough for the simple ”point” object, which
contains standard data fields of type ”double” only, but not for more com-
plicated objects with fields of type pointer-to-some-object (pointer fields).
Indeed, if the default destructor encounters a pointer field, then it destroys
only the address it contains, not the variable stored in it. As a result, although
this variable is no longer accessible because its address is gone, it still occupies
valuable computer memory.

Thus, in classes that contain not only standard data fields but also pointer
fields, the block of the destructor can no longer remain empty. It must con-
tain commands with the reserved word ”delete” followed by the name of the
pointer field. This command invokes implicitly the destructor of the class of
the variable stored in this address to release the memory it occupies before
its address is lost forever.

15.12 Member and Friend Functions

Interface functions may be of two possible kinds: member functions, which
are called in association with a current object, and friend functions, which
only take standard arguments that are passed to them as input. Some basic
functions, such as constructors, destructors, and assignment operators, must
be applied to a current object, hence must be member functions. More optional
functions such as ”X()”, ”Y()”, and ”zero” can be either defined in the class
block as above to act upon the current object ’P’ with which they are called
[as in ”P.X()”, ”P.Y()”, and ”P.zero()”], or as friend functions below (with no
current objects) to act upon their concrete argument.

Since member functions are defined inside the class block, they are ”un-
aware” of any code written outside the class block. Therefore, their definitions
can use (call) only interface functions, that is, functions that are declared in
the class block; they cannot use ordinary (noninterface) functions defined out-
side the class block, unless these functions are also declared as friends in the
class block.
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When a member function is called, it is assumed that the data fields men-
tioned in its block belong to the current object with which it is called. For
example, in a call of the form ”P.zero()”, the ”zero()” member function is
invoked with ’x’ interpreted as ”P.x” and ’y’ interpreted as ”P.y”.

Friend functions, on the other hand, have no current object; they can only
take arguments in the usual way.

The most important property of member functions is that they have access
to every field in the class block, private or public, including data fields of any
object of this type (including the current object) and any function declared
in the class block.

15.13 The Current Object and its Address

How is access to the current object granted? When a member function is
called, there is one extra argument that is passed to it implicitly, even though
it is not listed in the list of arguments. This argument, stored in a local pointer
referred to by the reserved word ”this”, is of type constant-pointer-to-object,
and points to the current object with which the member function is called.

This way, the current object can be accessed in the block of the mem-
ber function through its address ”this”. In member functions of the present
”point” class, for example, the ’x’ field in the current ”point” object can be
accessed by writing ”this− >x” or ”(*this).x” (which means the ’x’ field in
the ”point” object in ”this”) or ’x’ for short, and the ’y’ field in the current
”point” object can be accessed by writing ”this− >y” or ”(*this).y” (which
means the ’y’ field in the ”point” object in ”this”) or ’y’ for short.

When a member function is actually called, as in ”P.zero()” (for some con-
crete ”point” object ’P’), ”this” takes the value ”&P” (the address of ’P’). As
a result, ’x’ in the function block is interpreted as ”P.x” (the x-coordinate in
’P’), and ’y’ in the function block is interpreted as ”P.y” (the y-coordinate in
’P’).

In constant member functions like ”X()” and ”Y()” that have the reserved
word ”const” written right before the function block, ”this” is not only of
type constant-pointer-to-a-point but actually of type constant-pointer-to-a-
constant-point, which implies that both of the data fields in the current
object can never change throughout the function, so they are actually read-
only functions.

As a matter of fact, the command line in the block of the ”X()” member
function could have been written equivalently as

return this->x; // or: return (*this).x;

In nonconstant functions like ”zero” that lack the word ”const” before
their blocks, on the other hand, ”this” is a constant-pointer-to-nonconstant-

© 2009 by Taylor and Francis Group, LLC



320 CHAPTER 15. OBJECTS

point rather than a constant-pointer-to-constant-point. This is why the ’x’
and ’y’ coordinates of the (nonconstant) current object (or ”this− >x” and
”this− >y”) can indeed be changed through the ”this” pointer and set to
zero, as required.

When ”P.zero()” is called by the user, the local pointer ”this” takes the
value ”&P”, so ”this− >x” and ”this− >y” are interpreted as ”P.x” and
”P.y”. Once these nonconstant coordinates are set to zero, the nonconstant
object ’P’ is set to the origin (0, 0).

15.14 Returned Pointer

The local ”this” pointer can also be used to return the current object by
address. For example, the following version of the ”zero()” function not only
sets the current object to (0, 0) but also returns its address:

point* zero(){
x=y=0.;
return this;

} // returns pointer-to-current-point

This way, a temporary pointer-to-point variable is created at the end of the
function block, initialized with the address in ”this”, and returned for further
use in the same command line in which the ”zero()” function is called.

15.15 Pointer to a Constant Object

Because the pointer returned from this version of the ”zero” function ex-
ists only temporarily, it makes little sense to change its content. In fact, vari-
ables should change only through permanent, well-defined pointers rather than
through temporary ones. This is why it is better yet to declare the returned
pointer as a pointer-to-constant-point, so it can never be used to change its
content:

const point* zero(){
x=y=0.;
return this;

} // returns a pointer-to-constant-point

Indeed, the reserved word ”const” at the beginning of the header makes sure
that the returned pointer points to a constant point that can undergo no
change.
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The returned pointer can now be used to print the x-coordinate onto the
screen:

int main(){
point P;
printf("P.x=%f\n",P.zero()->X());
return 0;

} // print P.x after P has been set to (0,0)

Indeed, the call ”P.zero()” not only sets ’P’ to (0, 0) but also returns its
address. By adding the suffix ”>x”, we have the ’x’ field of the content of
this address, or ”P.x”, which is then printed onto the screen in the standard
”printf” function.

Later on we’ll also see how the ”zero” function can also be rewritten as a
”friend” function rather than a member function. For this, the reserved word
”friend” should be placed at the beginning of the declaration of the function
in the class block. In this implementation, no current object or ”this” pointer
is available; objects must be passed explicitly as arguments, as in ordinary
functions.

In the sequel, we’ll see that arguments should better pass not by name
(value) but rather by reference (address).

15.16 References

Instead of returning (or taking) a pointer, a function may also return (or
take) a reference to an object. In this style, the compiler does the same thing
as before in the sense that the object is returned (or passed) by address; still,
the function becomes easier to read, understand, and use, as it avoids dealing
with pointers and addresses.

In C++, one can define a reference to an existing variable. This means that
the variable can be referred to not only by its original name but also by an
alternative name:

point p;
point& q = p;

The prefix ”point&” indicates that ’q’ is not an independent ”point” object
but merely a reference-to-point, initialized to refer to the existing ”point”
object ’p’. In fact, no copy constructor is used; what the compiler really does
is create a new pointer-to-point, named ”&q”, and initialize it with the address
of ’p’, ”&p”. The convenient thing about this is that the user no longer needs to
use the symbol ’&’ every time he/she wants to change the original variable ’p’
or pass it by address; he/she can just change ’q’, and ’p’ would automatically
change at the same time as well.
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15.17 Passing Arguments by Reference

In the previous chapter, we’ve seen that an argument must be passed to a
function by address if it is supposed to change in it. Here we see that this can
equally well be done by passing the argument by reference, as in the following
version of the above ”zero()” function. First, the function is declared as a
”friend” in the class block, to have access to the private data fields of any
”point” object:

friend const point* zero(point&);

It is already clear from the type ”point&” in the round parentheses that
the argument is passed by reference rather than by address. The declaration,
however, specifies no name for this local reference; this is done only in the
actual definition, in which the local reference to the argument takes the name
’p’ for further use:

const point* zero(point&p){
p.x=p.y=0.;
return &p;

} // set the "point" argument to zero

Thanks to the symbol ’&’ in the round parentheses, ’p’ is not a copy of the
concrete argument but rather a reference to it. Thus, the concrete argument is
passed to the function not by value but rather by reference, and every change
to the local reference ’p’ effects it as well. This is why when a user makes
a call of the form ”zero(P)” for some well-defined ”point” object ’P’, ’P’ is
really changed and set to (0, 0), as required.

The advantage of declaring ”zero()” as a friend rather than a member of the
”point” class is in the opportunity to declare it also as a friend of other classes
as well, to be able to access private fields of other objects as well whenever
necessary. This is why the actual definition is better placed outside the class
block, to be recognized in other classes as well.

15.18 Returning by Reference

Better yet, the ”zero()” function could be rewritten to return a reference
rather than a pointer:

friend const point& zero(point&p){
p.x=p.y=0.;
return p;
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}

Indeed, thanks to the words ”const point&” before the function name and
the final command ”return p”, it returns a reference to the concrete argument
[that has just been set to (0, 0)] for further use in the same command line in
which the function is called:

printf("P.x=%f\n",zero(P).X());

Here, the reference to the existing ”point” object ’P’ returned by ”zero(P)”
is further used to invoke the ”X()” member function to return and print the
x-coordinate of ’P’, which has just been set to zero.

Friend functions are usually used to read private data fields from one or
more classes. The ”zero()” function that actually changes the data fields, on
the other hand, is better implemented as a public member function in the
block of the ”point” class as follows:

const point& zero(){
x=y=0.;
return *this;

}

In this style, the ”zero()” function still returns a reference to its current object,
which lies in the address ”this”, and hence is referred to as ”*this”. Thus,
the user can still set set the existing ”point” object ’P’ to (0, 0) and print its
x-coordinate at the same command line:

printf("P.x=%f\n",P.zero().X());

Here, the reference to ’P’ returned by the call ”P.zero()” serves as a current
object for the next call to the member function ”X()” to return and print the
x-coordinate of ’P’.

15.19 Efficiency in Passing by Reference

Clearly, passing by reference is much more efficient than passing by value,
as it avoids an (implicit) call to the copy constructor. For example, the
”negative” function in Section 15.10 can be rewritten as

const point negative(const point& p){
return point(-p.X(),-p.Y());

} // passing argument by reference
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This way, thanks to the ’&’ symbol in the round parentheses, ’p’ is only a
local reference to the concrete argument, so it requires no call to the copy
constructor.

Even in its improved version, the ”negative()” function still requires two
calls to constructor: first, the constructor that takes two ”double” arguments is
called explicitly in the function block to create −p. Then, the copy constructor
is called implicitly to copy −p into the constant temporary ”point” object
returned by the function, as is indeed indicated by the words ”const point”
before the function name.

Unfortunately, this call cannot be avoided. Indeed, if one had inserted the
symbol ’&’ before the function name to return a reference to −p rather than
a copy of it as in

const point& negative(const point& p){
return point(-p.X(),-p.Y());

} // wrong!!! returns reference to nothing

then the function would return a reference to the local ”point” object −p that
has already disappeared. This is why the local object −p must be copied into
the temporary object returned by the function before it is gone, as is indeed
indicated by the words ”const point” (rather than ”const point&”) before the
function name in the correct versions.

15.20 Copy Constructor

As mentioned in Section 15.10, it is advisable to define an explicit copy
constructor in the class block as follows:

point(const point& p):x(p.x),y(p.y){
} // copy constructor

Here, the data fields in the copied ”point” object ’p’ are used in the initial-
ization list to initialize the corresponding data fields in the new object.

Actually, this copy constructor works exactly the same as the default copy
constructor available in the C++ compiler. This is why it is also sometimes
referred to as the default copy constructor. Still, it is a good practice to write
your own copy constructor rather than to rely on a standard one, which may
do unsuitable things.

With the above copy constructor, the user can write

point Q = P; // same as point Q(P);

to construct a new ”point” object ’Q’ and initialize it to be the same as
the existing ”point” object ’P’. Yet more importantly, the copy constructor
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is invoked implicitly to return a ”point” object by value, as in the above
”negative” function (in its correct version).

15.21 Assignment Operators

Users of the ”point” class may also want to assign the value of an existing
object ’Q’ to the existing objects ’W’ and ’P’ by writing

point P,W,Q(1.,2.);
P=W=Q;

To allow users to write this, an assignment operator must be written in the
class block in such a way that it not only assigns the value of the concrete
argument ’Q’ into the current object ’W’ but also returns a reference to it,
which can then be assigned to ’P’ as well:

const point& operator=(const point& p){

This is the header of the assignment operator, named ”operator=”. (This
name is necessary to allow users to make calls like ”W = Q” to invoke it
to assign ’Q’ to ’W’.) The ”point” argument is passed to the function by
reference, thanks to the symbol ’&’ in the round parentheses above. Further-
more, the current object (which exists before, during, and after the call to the
function) is also returned by reference, thanks to the symbol ’&’ before the
function name. This helps to avoid unnecessary calls to the copy constructor.

Moreover, both the argument and the returned object are declared as con-
stants to protect them from any inadvertent change. This way, the function
can take even constant (or temporary) arguments, with no fear that they
would undergo inappropriate changes through their local reference.

We are now ready to start the function block. If the current object is the
same as the argument (or, more precisely, the address of the current object,
”this”, is the same as that of the argument, ”&p”), then nothing should be
assigned. If, on the other hand, they are not the same,

if(this != &p){

then the data fields should be assigned one by one:

x = p.x;
y = p.y;

}

Finally, the current object (which lies in the address ”this”) is also returned
for further use:
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return *this;
} // point-to-point assignment operator

We refer to this operator as the point-to-point assignment operator. This
operator is invoked whenever the compiler encounters a command like ”W =
Q” to assign the value of ’Q’ to ’W’ as well. Furthermore, when the compiler
encounters a command like

W=1.;

it first invokes implicitly the constructor that takes ”double” arguments to
create the temporary ”point” object (1, 0) before assigning it to ’W’. The
”zero()” function in Section 15.2 is, thus, no longer necessary: one can set ’W’
to zero simply by writing ”W = 0.”.

To avoid this extra construction, one may write a special ”double”-to-point
assignment operator in the class block:

const point& operator=(double xx){
x = xx;
y = 0.;
return *this;

} // double-to-point assignment operator

This assignment operator is invoked whenever the compiler encounters a com-
mand of the form ”W = 1.”, because it can take the ”double” argument on the
right-hand side with no implicit conversion. Furthermore, the current object
’W’ returned by reference from this call can then be assigned to yet another
object ’P’:

P.operator=(W.operator=(0.)); // same as P=W=0.;

This is exactly the same as the original form ”P = W = 0.”, which is more
transparent and elegant and more in the spirit of object-oriented program-
ming, since it is as in standard C types.

15.22 Operators

One may also define more operators, using all sorts of arithmetic or logical
symbols. In fact, operators are functions that can be called not only by their
names but also by their symbols. For example, one may choose to use the ’&’
to denote inner product in the Cartesian plane:

double operator&&(const point&p, const point&q){
return p.X() * q.X() + p.Y() * q.Y();

} // inner product

© 2009 by Taylor and Francis Group, LLC



15.23. INVERSE CONVERSION 327

With this operator, the user may write just ”P && Q” to have the inner
product of the ”point” objects ’P’ and ’Q’.

Thus, in the context of ”point” objects, the ”&&” has nothing to do with
the logical ”and” operator in C. All that it inherits from it is the number of
arguments (which must be two) and the priority order with respect to other
operators.

Note that the above operator is implemented as an ordinary (nonmember,
nonfriend) function, because it needs no access to any private member of the
”point” class. In fact, it accesses the ’x’ and ’y’ fields in ’p’ and ’q’ through
the public member functions ”X()” and ”Y()”.

Note also that, as in the point-to-point assignment operator above, the argu-
ments are passed by reference, rather than by value, to avoid unnecessary calls
to the copy constructor. Furthermore, they are also declared as constants, so
that the function can be applied even to constant (or temporary) concrete ar-
guments, with no fear that they would undergo inappropriate changes through
their local references.

15.23 Inverse Conversion

One may also define in the class block a public member inverse-conversion
operator to convert the current object into another object. This operator is
special, because its name is not a symbol but rather the type into which the
object is converted.

Here is how an inverse-conversion operator can be defined in the block of
the ”point” class:

operator double() const{
return x;

} // inverse conversion

With this public member function, the user can write ”double(P)” or ”(dou-
ble)P” to read the x-coordinate of the ”point” object ’P’ without changing it
at all (as indicated by the reserved word ”const” before the function block).
Furthermore, the user can pass a ”point” object to a function that takes
a ”double” argument. Indeed, in this case, the compiler would invoke the
inverse-conversion operator implicitly to pass to the function the x-coordinate
of the ”point” object.

This, however, may not at all be what the user wanted to do. In fact, it
might be just a human error, and the user would much rather the compiler to
issue a compilation error to alert him/her. Therefore, the careful programmer
may decline to write an inverse-conversion operator, to prevent the compiler
from accepting code that might contain human errors.
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15.24 Unary Operators

The ”negative” function in Section 15.10 can also take the form of a unary
operator that takes a ”point” object and returns its negative. For this purpose,
it is enough to change the name of the ”negative” function to ”operator−”.
With this new name, the user can invoke the function simply by writing ”−P”,
where ’P’ is a well-defined ”point” object.

The ”operator−” can be even more efficient than the original ”negative”
function. Indeed, with the original function, the code

point W = negative(1.);

requires an implicit conversion of the ”double” number 1 into the ”point”
object (1, 0), which is passed to the ”negative” function to produce the point
(−1, 0). The copy constructor is then called to construct and initialize ’W’.
With the new ”operator−”, on the other hand, this code takes the form

point W = -1.;

which only uses one call to the constructor to form directly the required point
’W’= (−1, 0).

The reserved word ”operator” that appears in the function name can be
omitted from the actual call, leaving only the symbol that follows it. Thus,
instead of writing ”operator−(P)”, the user can simply write ”−P”, as in the
original mathematical formulation.

15.25 Update Operators

Here we consider update operators that use their argument to update their
current object with which they are called. In particular, the ”+ =” operator
below adds its argument to its current object. In its main version, this operator
is defined as a member function inside the class block:

const point& operator+=(const point& p){
x += p.x;
y += p.y;
return *this;

} // adding a point to the current point

With this operator, the user can simply write ”P + = Q” to invoke the above
operator with ’P’ on the left being the current object and ’Q’ on the right
being the argument. In fact, this call adds ’Q’ to ’P’ and stores the sum back
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in ’P’. Furthermore, it also returns a constant reference to the current object
’P’, for further use in the same command line in which the call is made. This
way, the user can write ”W = P + = Q” to store the sum of ’P’ and ’Q’ not
only in ’P’ but also in ’W’.

If, on the other hand, the user writes a command like ”P + = 1.”, then
the double number 1 is first converted implicitly to the ”point” object (1, 0)
before being added to ’P’. To avoid this conversion, one could write in the
class block a special version of ”operator+ =” that takes ”double” rather than
”point” argument:

const point& operator+=(double xx){
x += xx;
return *this;

} // add a real number to the current point

This version is then invoked whenever the compiler encounters a call like ”P
+ = 1.”, because it can take it with no implicit conversion.

15.26 Friend Update Operators

The natural implementation of ”operator+ =” is as a member function,
which adds its argument to its current object. However, it could also be imple-
mented as a ”friend” function, with an extra (nonconstant) argument instead
of the current object:

friend const point&
operator+=(point&P,const point& p){

P.x += p.x;
P.y += p.y;
return P;

}

This version can still be called simply by ”P + = Q” as before. Indeed, in this
call, ’P on the left is passed as the first (nonconstant) argument, whereas ’Q’
on the right is passed as the second (constant) argument that is added to it.

The ”friend” implementation, although correct, is somewhat unnatural in
the context of object-oriented programming. Indeed, it has the format of an
ordinary function that changes its argument. In object-oriented programming,
however, we prefer to think in terms of objects that have functions to express
their features, rather than in terms of functions that act upon objects. This
concept is better expressed in the original implementation as a member func-
tion.
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Furthermore, the ”friend” version has yet another drawback: it wouldn’t
take a temporary object as its first (nonconstant) argument, out of fear that
changing it makes no sense and must be a human error. For example, it
would issue a compilation error whenever encountering calls like ”point(P)
+ = Q”. The original member implementation, on the other hand, would
take a temporary object as its current object, thus would accept such calls
as well. Below we’ll see that such calls are particularly useful, so one should
better stick to the original member implementation.

15.27 Binary Operators

One can also define binary operators that take two ”point” arguments to
calculate and return the required output. In particular, the ’+’ operator is
defined below outside of the class block as an ordinary function that needs no
access to any private data field:

const point
operator+(const point& p, const point& q){
return point(p.X()+q.X(),p.Y()+q.Y());

} // add two points

Unlike the ”+=” operator, this operator doesn’t change its arguments, which
are both passed (by reference) as constant ”point” objects. Their sum, how-
ever, can’t be returned by reference, because it would then be a reference to
a local ”point” object that disappears when the function ends. It is rather
returned by value (as is indeed indicated by the words ”const point” in the
beginning of the header), so that this local ”point” object is copied to the
temporary objects returned by the function before it ends.

The above ’+’ can be defined as the programmer wishes, and has nothing to
do with the ’+’ arithmetic operation on integer or real numbers. Still, it makes
sense to define the ’+’ operator as in the common mathematical formulation.
Indeed, with the above definition, the user can write simply ”P + Q” to have
the sum of the points ’P’ and ’Q’.

There are only two things that the ’+’ operator defined above does inherit
from the ’+’ arithmetic operation in C: the number of arguments (it must
be a binary operator that takes two arguments) and the priority order with
respect to other operators. For example, if the programmer also defines a ’*’
operator to somehow multiply two point objects, then it is prior to the above
’+’ operator.

As mentioned at the end of Section 15.23, we assume that no inverse con-
version is available, because the ”operator double()” that converts ”point” to
”double” is dropped. Therefore, since both arguments in ”operator+” are of
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type reference-to-constant-point, ”operator+” can be called not only with two
”point” arguments (as in ”P + Q”) but also with one ”point” argument and
one ”double” argument (as in ”P + 1.” or ”1. + P”). Indeed, thanks to the
implicit double-to-point conversion in Section 15.9, the ”double” number 1 is
converted to the point (1, 0) before being added to ’P’. Furthermore, thanks to
the lack of inverse conversion, there is no ambiguity, because it is impossible
to convert ’P’ to ”double” and add it to 1 as ”double” numbers.

To avoid the above implicit conversion, though, one can write explicit ver-
sions of ”operator+” to add ”double” and ”point” objects:

const point operator+(const point& p, double xx){
return point(p.X()+xx,p.Y());

} // point plus real number

const point operator+(double xx, const point& p){
return point(p.X()+xx,p.Y());

} // real number plus point

15.28 Friend Binary Operators

Since the ’+’ operator is defined outside of the class block, it cannot be
called from functions inside the class block, unless declared in the class block
as a friend:

friend const point operator+(const point&, const point&);

With this declaration, the ’+’ operator can also be called from inside the class
block as well. Furthermore, it has access to the private data fields ’x’ and ’y’
of its ”point” arguments. In fact, it could equally well be defined inside the
class block as follows:

friend const point operator+(
const point& p, const point& q){

return point(p.x+q.x,p.y+q.y);
} // defined as "friend" in the class block

15.29 Member Binary Operators

The ’+’ operator could also be implemented as a member function inside
the class block as follows:
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const point operator+(const point& p) const{
return point(x+p.x,y+p.y);

} // defined as "member" in the class block

With this implementation, the user can still call the operator simply by writing
”P + Q”. In this call, ’P’ is the (constant) current object, and ’Q’ is the
(constant) argument used to calculate and return the sum of ’P’ and ’Q’.

This, however, is a rather nonsymmetric implementation. Indeed, implicit
conversion can take place only for the second argument, but not for the first
one, the current object. Therefore, ”P + 1.” is legal, but ”1. + P” is not. This
nonsymmetry makes no apparent sense.

15.30 Ordinary Binary Operators

The original implementation of ”operator+” as an ordinary function outside
of the class block is also more in the spirit of object-oriented programming.
Indeed, it avoids direct access to the private data fields ’x’ and ’y’ in ”point”
objects, and uses only indirect access through the public member functions
”X()” and ”Y()” to read them. This way, the ’+’ operator is independent of
the internal implementation of ”point” objects.

The original implementation of the ’+’ operator as an ordinary function
can also be written in a more elegant way, using the ”operator+=” member
function defined in Section 15.25:

const point
operator+(const point& p, const point& q){
return point(p) += q;

} // point plus point

Indeed, thanks to the fact that the ”+=” operator is defined in Section 15.25
as a member (rather than a mere friend) of the ”point” class, it takes even
temporary ”point” objects [like the temporary object ”point(p)” returned
from the copy constructor] as its current objects.

15.31 Complex Numbers

The ”complex” numbers introduced in Chapter 5 are available as a stan-
dard type (along with the arithmetic operations between them) in a standard
library that can be included in the program. Here, however, we prefer not to
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rely on this library and define our own ”complex” class, as a good exercise in
implementing and using mathematical objects.

Like the ”point” class, the ”complex” class should contain two private data
fields to store the real and imaginary parts of a complex number. Further-
more, it contains some member operators to implement arithmetic operations
between complex numbers. Moreover, thanks to the constructor and the copy
constructor, the user of the ”complex” class can define complex variables
simply by writing commands like ”complex c”, ”complex c(0.,0.)”, ”complex
d(c)”, or ”complex d = c”.

The ”complex” class is implemented as follows:

class complex{
double real;
double image;

These are the private ”double” fields that store the real and imaginary parts
of the ”complex” object. In the following constructor, these data fields are
initialized in the initialization list to have their required values immediately
upon definition:

public:
complex(double r=0.,double i=0.):real(r), image(i){
} // constructor

Furthermore, thanks to the default values given to the dummy arguments, the
user can define a complex variable not only by writing ”complex c(0.,0.)” but
also by writing ”complex c”, ”complex c(0.)”, or ”complex c = 0.”. Moreover,
thanks to the default values, the above constructor also supports explicit
conversion as in ”complex(0.)” or ”(complex)0.”, and even implicit ”double”-
to-complex conversion whenever a ”double” argument is passed to a function
that expects a ”complex” argument.

The copy constructor is implemented in a similar way:

complex(const complex&c):real(c.real),image(c.image){
} // copy constructor

With this constructor, the user can define a new ”complex” variable ’d’ and
initialize it immediately upon definition to have the same value as the existing
”complex” variable ’c’ simply by writing ”complex d(c)” or ”complex d = c”.

The (default) destructor defined below has an empty block, because the
”image” and ”real” fields are destroyed implicitly (in this order) at the ’}’
symbol that makes the end of the following block:

~complex(){
} // destructor
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Because the data fields ”real” and ”image” are declared before the reserved
word ”public:”, they are by default private members of the class. Therefore,
only members and friends of the class can access them. Users and ordinary
functions, on the other hand, can only read them indirectly through the fol-
lowing public member functions:

double re() const{
return real;

} // read real part

double im() const{
return image;

} // read imaginary part

The assignment operator is defined as follows:

const complex&operator=(const complex&c){
real = c.real;
image = c.image;
return *this;

} // assignment operator

Here the current object is not only assigned a value from the argument (which
is passed by a constant reference) but also returned by a constant reference.
This allows users to write commands like ”e = d = c” (where ’c’, ’d’, and ’e’
are well-defined ”complex” objects) to assign ’c’ not only to ’d’ but also to
’e’.

15.32 Member Arithmetic Operators with Complex Num-
bers

Next, we define some member arithmetic operators that update the current
”complex” object.

const complex&operator+=(const complex&c){
real += c.real;
image += c.image;
return *this;

} // add complex to the current complex

With this operator, the user can write ”e = d += c” to add ’c’ to ’d’ and
place the sum in both ’d’ and ’e’.

The ”-=” operator is defined in a similar way:
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const complex&operator-=(const complex&c){
real -= c.real;
image -= c.image;
return *this;

} // subtract complex from the current complex

With this operator, the user can write ”e = d -= c” to subtract ’c’ from ’d’
and place the sum in both ’d’ and ’e’.

The following operator multiplies the current object by the argument:

const complex&operator*=(const complex&c){
double keepreal = real;
real = real*c.real-image*c.image;
image = keepreal*c.image+image*c.real;
return *this;

} // multiply the current complex by a complex

With this operator, the user can write ”e = d *= c” to multiply ’d’ by ’c’ and
place the sum in both ’d’ and ’e’.

The following operator divides the current ”complex” object by the real
number ’d’:

const complex&operator/=(double d){
real /= d;
image /= d;
return *this;

} // divide the current complex by a real number

Later on, we’ll also define yet another version of ”operator/ =” that divides
the current ”complex” object by a ”complex” (rather than a ”double”) argu-
ment. As a member function, this version will recognize no ordinary function
defined outside of the class block unless declared as a friend in the class block.
This is why the following two functions, which are going to be used in it, are
indeed declared as friends in the class block:

The following ”operator!” returns the complex conjugate of a complex num-
ber. Although it uses the ’ !’ symbol, it has nothing to do with the logical ”not”
operator in C. The only common property in these two operators is that both
are unary, that is, take one argument only.

The function requires no current object; this is why it is defined as a friend
rather than a member of the ”complex” class. The second word in the header,
”complex”, indicates that the output is returned by value rather than by
reference, to avoid referring to a local variable that no longer exists when the
function terminates.

friend complex operator!(const complex&c){
return complex(c.re(),-c.im());

} // conjugate of a complex
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With this operator, the user can just write ”!c” to have the complex conjugate
of ’c’.

The following ”abs2()” function returns the square of the absolute value of
the complex number:

friend double abs2(const complex&c){
return c.re() * c.re() + c.im() * c.im();

} // square of the absolute value of a complex

These two friend functions are now used in the following member function
that divides the current ”complex” object by the ”complex” argument:

const complex&operator/=(const complex&c){
return *this *= (!c) /= abs2(c);

} // divide the current complex by a complex
};

Indeed, the code line in the function block is executed from right to left:
first, the original version of ”operator/ =” is invoked to divide the complex
conjugate of ’c’ by the real number ”abs2(c)”. (As a member function, it can
take the temporary nonconstant object ”!c” as its current object.) Then, the
output of this division is used to multiply the current ”complex” object in
”this”, as required. Finally, the current object in ”this” is also returned by
reference for further use. This way, the user can write ”e = d /= c” to divide
’d’ by ’c’ and place the result in both ’d’ and ’e’. This completes the block of
the ”complex” class.

15.33 Ordinary Arithmetic Operators with Complex Num-
bers

Here we implement some ordinary (nonmember, nonfriend) arithmetic op-
erators on complex numbers. The following unary ”operator−” returns the
minus of a complex number:

const complex
operator-(const complex&c){
return complex(-c.re(),-c.im());

} // negative of a complex number

With this operator, the user can write ”-c” to have the minus of the complex
number ’c’.

The following binary ”operator−” returns the difference between two com-
plex numbers:
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const complex
operator-(const complex&c,const complex&d){
return complex(c.re()-d.re(),c.im()-d.im());

} // subtraction of two complex numbers

With this operator, the user can write ”c - d” to have the difference between
’c’ and ’d’. There is no ambiguity between the two ”operator−” versions:
the C++ compiler uses the binary version when the ’−’ symbol is placed in
between two ”complex” objects and the unary version when it is placed before
a single ”complex” object.

The following ”operator+” returns the sum of two complex numbers:

const complex
operator+(const complex&c,const complex&d){
return complex(c.re()+d.re(),c.im()+d.im());

} // addition of two complex numbers

Note that, as is indicated by the words ”const complex” at the beginning of
the header, the output is returned by value rather than by reference, to avoid
referring to a local variable that no longer exists at the end of the function.

The following operator returns the product of two complex numbers:

const complex
operator*(const complex&c,const complex&d){
return complex(c) *= d;

} // multiplication of two complex numbers

Indeed, as a member function, the ”*=” operator can take the temporary non-
constant ”complex” object ”complex(c)” returned from the copy constructor,
use it as its current object, multiply it by ’d’, and return it by value, as
required.

Similarly, the following operator returns the ratio between two complex
numbers:

const complex
operator/(const complex&c,const complex&d){
return complex(c) /= d;

} // division of two complex numbers

Finally, we also define the unary ”operator+” to return the complex conjugate
of a complex number. This way, the user can write ”+t” for any variable ’t’ of
a numerical type, may it be either real or complex. Indeed, if ’t’ is real, then
”+t” is the same as ’t’, as required; if, on the other hand, ’t’ is complex, then
”+t” is the complex conjugate of ’t’, as required.

complex operator+(const complex&c){
return complex(c.re(),-c.im());

} // conjugate complex
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This concludes the arithmetic operations with complex numbers. Finally, we
define a function that prints a complex number to the screen:

void print(const complex&c){
printf("(%f,%f)\n",c.re(),c.im());

} // printing a complex number

15.34 Exercises

1. Write the class ”point3” that implements a point in the three-dimensional
Cartesian space. Write the constructors, destructor, assignment operators,
and arithmetic operators for this class.

2. Write a function that uses the polar representation of a complex number

c ≡ r(cos(θ) + i · sin(θ))

to calculate its square root
√

c. (Here 0 ≤ θ < 2π is the angle with the
positive x-axis, see Chapter 5.) The solution can be found in Section 28.5
in the appendix.

3. In the previous exercise, the angle in the polar representation of c, θ,
lies between 0 and 2π, so the angle in the polar representation of

√
c,

θ/2, lies between 0 and π. Unfortunately, this way the square root func-
tion is discontinuous at the positive part of the real axis. Indeed, when
θ approaches 0+ (θ > 0) θ/2 approaches 0, as required; but, when θ ap-
proaches 2π− (θ < 2π), θ/2 approaches π, yielding the negative of the
required square root. To fix this, modify your code so that the original
angle, θ, lies between −π and π, so θ/2 lies between −π/2 and π/2. This
way, θ/2 approaches 0 whenever θ approaches 0, regardless of whether
θ > 0 or θ < 0. The solution can be found at the end of Section 28.5 in
the appendix.

4. Implement complex numbers in polar coordinates: a ”complex” object
contains two fields, ’r’ and ”theta”, to store the parameters r ≥ 0 and
0 ≤ θ < 2π used in the polar representation

r exp(iθ) = r (cos(θ) + i · sin(θ)) .

Redefine the above constructors, destructor, and assignment operators in
this implementation. Furthermore, redefine and test the required arith-
metic operations.

5. Do users of the ”complex” class have to be informed about the modifica-
tion made above? Why?
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Chapter 16

Vectors and Matrices

The most important objects in linear algebra are vectors and matrices (Chap-
ter 9). Here we implement these objects, along with the operators that use
them. Users who include this code in their programs can define vectors and
matrices just by writing commands like ”vector v;” or ”matrix m;”.

Furthermore, the various versions of the ’*’ operator defined below allow
the user to write commands like ”v*v”, ”m*v”, and ”m*m” to multiply vector
times vector (inner product), matrix times vector, and matrix times matrix
(respectively), exactly as in the corresponding mathematical formulation.

Thus, with the present implementation, users can use vectors and matrices
as if they were standard objects available in C. This way, users can think
and write about vectors and matrices in their original mathematical spirit,
without bothering with any storage details. This helps not only to implement
complicated algorithms in short, elegant, and well-debugged codes, but also
to understand better the nature of the objects and continue to develop and
improve the algorithms and applications that use them.

16.1 Induction and Deduction in Object-Oriented Pro-
gramming

In Chapter 10, Section 10.1, we have discussed the principle of induction
and deduction in solving problems. This principle says that, in order to solve a
particular problem, it is sometimes useful to generalize it into a more general
problem, written in more general terms. In these general terminology and
framework, it is sometimes much easier to solve the problem, because the
technical details that characterize the original problem and may obscure the
essential components in it are moved out of the way. Furthermore, the general
problem obtained from the original particular problem may have a general
theory, based on fundamental objects and ideas.

The generalization of the original particular problem into a more general
problem is called induction. Once a general framework has been defined and a
suitable theory has been developed, the general problem can be solved. Now,
the solution of the original problem is immediately obtained as a special case.
This is called deduction. The result is, thus, that not only the original problem
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has been solved as required, but also that a general theory has been developed
to solve the general problem.

The principle of induction and deduction can also be used in object-oriented
programming. In this case, however, no explicit problem is given. Instead, the
task is to define and implement a particular object, along with its useful
functions. Here the principle of induction indicates that one should better
define a more general object, from which the required object can be obtained
as a special case.

This approach may help to define the general object more correctly. In-
deed, in the general form of the object, the immaterial details are moved out
of the way, leaving only its essential characters and features. In the general
implementation, these characters and features are written in terms of (mem-
ber) functions that make the object look as it indeed should look. Once the
implementation of the general object is complete, the required object can be
obtained as a special case.

Consider, for example, the task to implement a point in the Cartesian plane.
Such a point can be viewed as a vector with two coordinates. In this case, one
is well advised to use induction to generalize the original task into the more
general task of implementing an n-dimensional vector (as defined in Chapter
9, Section 9.5), where n is any natural number. Once this general object is
implemented, the original task is also complete by deduction: that is, by using
the special case n = 2.

16.2 Templates

A powerful programming tool to use induction and deduction is the tem-
plate. Indeed, one can write a template class to define a general object that
depends on some yet unspecified parameter, say n. Then, one can write all
sorts of interface functions using the parameter n. This way, the user of this
template class can define a concrete object by specifying the parameter n. For
example, if the user wishes to define a two-dimensional vector, then they can
define an n-dimensional vector with n being specified to be 2.

Arithmetic operations with vectors are better implemented on general n-
dimensional vectors (as in the induction stage above) than on specific two-
dimensional or three-dimensional vectors. Once they have been implemented
in their general form, it is particularly easy to obtain the desirable concrete
form by setting n = 2 for points in the Cartesian plane or n = 3 for points in
the Cartesian space (the deduction stage).

Thus, the template class can define general n-dimensional vectors, along
with their arithmetic operations as well as other useful functions. It is only
later that the user specifies n to suit his/her concrete application. The arith-
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metic operators still apply, because they are written in a most general form
suitable for every n.

16.3 The Vector Object

Here we implement n-dimensional vectors in a template class that uses the
integer ’N’ to stand for the dimension n. Furthermore, the template class also
uses the parameter ’T’ to stand for the particular type of the components in
the vector. For example, if the user specifies ’T’ to be ”float” or ”double”,
then real-valued vectors (vectors with real components) are implemented. If,
on the other hand, the user specifies ’T’ to be the ”complex” class in Chapter
15, Section 15.31, then complex-valued vectors (vectors with complex compo-
nents) are implemented.

With the present ”vector” class, there is no longer any need to implement
points in the Cartesian plane as in the ”point” class in Chapter 15. Indeed,
such points can be obtained as a special case (deduction) by setting ’N’ to be
2 and ’T’ to be ”double”. This approach avoids a lot of unnecessary program-
ming work.

In the following implementation, the words ”template<class T, int N>”
before the definitions of the class and the functions indicate that they indeed
take two template parameters: ’T’ to specify the type of the components in
the vector, and ’N’ to specify the number of components in a vector. In the
definitions, these parameters are not yet specified. In fact, it is easier to define
the class and the functions with ’T’ being an unspecified type and ’N’ being
an unspecified natural number (the induction stage). As a matter of fact, ’T’
and ’N’ are specified only when the user defines a concrete ”vector” object
later on (the deduction stage).

template<class T, int N> class vector{
T component[N];

The private data field ”component” is an array of ’N’ entries of type ’T’. Here
are the declarations of the public member functions: a constructor that takes
a ’T’ argument,

public:
vector(const T&);

a constructor that takes a ’T’, an integer, and a string:

vector(const T&,int,char*);

a copy constructor,
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vector(const vector&);

an assignment operator,

const vector& operator=(const vector&);

and an assignment operator that takes a ’T’ argument:

const vector& operator=(const T&);

These functions will be defined in detail later on.
Next, we define the destructor. The function block is empty, because the

data field ”component” is destroyed automatically at the ’}’ symbol that
marks its end.

~vector(){
} // destructor

Because it does the same thing as the default destructor available in the C++
compiler, this destructor is also referred to as the default destructor.

Furthermore, because the components in the vector are private members,
the user can access them only through public member functions:

const T& operator[](int i) const{
return component[i];

} //read ith component

Thanks to the reserved word ”const” before the function block, the current
”vector” object is protected from any inadvertent change. After all, the pur-
pose of this operator is only to read the ’i’th entry, not to change it. In fact,
the ’i’th entry is returned by reference rather than by value, to avoid an un-
necessary call to the copy constructor of the ’T’ class, whatever it may be.
Furthermore, the returned entry is declared as constant in the beginning of
the header, so that it cannot be passed (neither as an argument nor as a cur-
rent object) to any function that may change its value, a change that makes
no sense.

With the above operator, the user can just write ”v[i]” to read the ’i’th
component in the ”vector” object ’v’. This is indeed in the spirit of the original
mathematical formulation of vectors.

Moreover, here is the member function that sets the ’i’th entry to have the
same value as the ’T’ argument:

void set(int i,const T& a){
component[i] = a;

} // change ith component

In fact, the only way the user can change the value of the ’i’th component
in ’v’ into the scalar ’a’ is to apply this function to the current object ’v’ by
writing ”v.set(i,a)”.

Moreover, here are the declarations of some member update operators:
adding a vector to the current vector,
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const vector& operator+=(const vector&);

subtracting a vector from the current vector,

const vector& operator-=(const vector&);

multiplying the current vector by a scalar,

const vector& operator*=(const T&);

and dividing the current vector by a nonzero scalar:

const vector& operator/=(const T&);
};

This concludes the block of the ”vector” template class.

16.4 Constructors

Next, we define explicitly the member functions that are only declared in
the class block above. Each header starts with the words ”template<class
T,int N>” to indicate that this is indeed a template function that, although
defined in terms of the general parameter ’T’ and ’N’ (the induction stage),
does require their explicit specification when actually called by the user (the
deduction stage). Furthermore, the prefix ”vector<T,N>::” before the func-
tion name in the header indicates that this is indeed the definition of a member
function (with a current ”vector” object) that actually belongs in the class
block.

Here is the constructor that takes a scalar argument ’a’ to set the values of
the components:

template<class T, int N>
vector<T,N>::vector(const T& a = 0){

for(int i = 0; i < N; i++)
component[i] = a;

} // constructor

Here is a yet more sophisticated constructor that takes not only the scalar ’a’
but also the integer ’n’ to construct the ’n’th unit vector, that is, the vector
whose components vanish, except of the ’n’th component, whose value is ’a’.

template<class T, int N>
vector<T,N>::vector(const T& a = 0,int n,char*){

for(int i = 0; i < N; i++)
component[i] = 0;

component[n] = a;
} // constructor of a standard unit vector
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To construct the unit vector (1, 0), for example, the user can just write
”vector<double,2> x(1.,0,”x”)”. The third argument, the string, is present
only to let the compiler know that this constructor is indeed the one that is
called.

Similarly, the copy constructor is defined as follows:

template<class T, int N>
vector<T,N>::vector(const vector<T,N>& v){
for(int i = 0; i < N; i++)
component[i] = v.component[i];

} // copy constructor

16.5 Assignment Operators

The assignment operator is defined as follows:

template<class T, int N>
const vector<T,N>& vector<T,N>::operator=(

const vector<T,N>& v){

If the assignment is indeed nontrivial, that is, the argument ’v’ is not the same
object as the current object,

if(this != &v)

then assign the components of ’v’ one by one to the corresponding components
of the current object:

for(int i = 0; i < N; i++)
component[i] = v.component[i];

Finally, return a constant reference to the current object, as is indeed indicated
by the words ”const vector<T,N>&” in the header:

return *this;
} // assignment operator

This way, the user can write commands like ”w =u =v” to assign the vector ’v’
to both vectors ’u’ and ’w’, provided that they are all of the same dimension.

Here is yet another version of the assignment operator, which takes a scalar
(rather than a vector) argument ’a’, and assigns it to all the components of
the current vector:
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template<class T, int N>
const vector<T,N>& vector<T,N>::operator=(const T& a){
for(int i = 0; i < N; i++)
component[i] = a;

return *this;
} // assignment operator with a scalar argument

This version is invoked whenever the user writes commands like ”u = 0.”.

16.6 Arithmetic Operators

Here we define the member update operators that are only declared in the
class block above. The ”+=” operator, which adds the vector argument ’v’ to
the current vector, is defined as follows:

template<class T, int N>
const vector<T,N>&
vector<T,N>::operator+=(const vector<T,N>&v){

for(int i = 0; i < N; i++)
component[i] += v[i];

return *this;
} // adding a vector to the current vector

In this code, it is assumed that the current vector has the same dimension as
the vector ’v’ that is passed as an argument. It is advisable to verify this in
an ”if” question in the beginning of the function, and issue an error message
if this is not the case. These details are left to the reader.

The above ”+=” operator is now used to define the binary ’+’ operator to
calculate the sum of the vectors ’u’ and ’v’ of the same dimension:

template<class T, int N>
const vector<T,N>
operator+(const vector<T,N>&u, const vector<T,N>&v){
return vector<T,N>(u) += v;

} // vector plus vector

Indeed, as a member function, the ”+=” operator can indeed take the tem-
porary vector ”vector<T,N>(u)” (returned from the copy constructor) as its
current vector, add ’v’ to it, and return the sum by value, as is indeed in-
dicated by the words ”const vector<T,N>” in the header, just before the
function name. The ’+’ operator is an ordinary function that can be invoked
by the user simply by writing ”u + v” to calculate the sum of the two existing
vectors ’u’ and ’v’ (which are of the same dimension).
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The implementation of the rest of the arithmetic operators with vectors
(such as multiplying a vector by a scalar, etc.) is left as an exercise. In the
sequel, we assume that these operators are already available.

The following ordinary function is the unary operator that returns the neg-
ative of the argument:

template<class T, int N>
const vector<T,N>
operator-(const vector<T,N>&u){
return vector<T,N>(u) *= -1;

} // negative of a vector

With this unary operator, the user can just write ”−v” to have the negative
of the well-defined vector ’v’, as in standard mathematical formulas.

The following ordinary function returns the inner product of two vectors
(defined in Chapter 9, Section 9.14):

template<class T, int N>
const T
operator*(const vector<T,N>&u, const vector<T,N>&v){

T sum = 0;
for(int i = 0; i < N; i++)
sum += (+u[i]) * v[i];

return sum;
} // vector times vector (inner product)

Indeed, if ’T’ is ”float” or ”double”, then ”+u[i]” is just the ’i’th component in
the vector ’u’. If, on the other hand, ’T’ is the ”complex” class, then ”+u[i]”
is the complex conjugate of the ’i’th component of ’u’, as required.

The above function is also used in the following ordinary function to return
the squared l2-norm of a vector:

template<class T, int N>
T squaredNorm(const vector<T,N>&u){

return u*u;
} // squared l2-norm

Similarly, the following ordinary function returns the l2-norm of a vector:

template<class T, int N>
const T l2norm(const vector<T,N>&u){

return sqrt(u*u);
} // l2 norm

Finally, here is the ordinary function that prints a vector component by com-
ponent onto the screen:
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template<class T, int N>
void print(const vector<T,N>&v){
printf("(");
for(int i = 0;i < N; i++){
printf("v[%d]=",i);
print(v[i]);

}
printf(")\n");

} // printing a vector

16.7 Points in the Cartesian Plane and Space

The induction step, in which general ’N’-dimensional vectors are imple-
mented, is now complete. The ”point” class implemented in Chapter 15 is no
longer necessary; indeed, it can be obtained from the ’N’-dimensional vector
as a special case, that is, in the deduction that sets ’N’ to be 2:

typedef vector<double,2> point;

Indeed, the ”typedef” command tells the C compiler that two terms are
the same. As a result, ”point” can be used as short for ”vector<double,22”,
namely, a point in the two-dimensional Cartesian plane.

Similarly, the command

typedef vector<double,3> point3;

allows the user to use the term ”point3” as short for ”vector<double,3>”, for
a point in the three-dimensional Cartesian space.

16.8 Inheritance

An object in C++ may ”have” yet another object contained in it. For
example, the ”vector” class indeed has components of type ’T’ in it. This is
the ”has a” approach. These components are private members that can be
accessed from member and friend functions only.

On the other hand, an object in C++ may actually be viewed as another
object as well. For example, the ”complex” object may actually be viewed as
a ”point” object. Indeed, as discussed in Chapter 5, the complex number may
also be interpreted geometrically as a point in the Cartesian plane. This is
the ”is a” approach.
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-

-

underlying object derived object

-base class derived class

FIGURE 16.1: The principle of inheritance.

The principle of inheritance in C++ is based on the ”is a” approach (Fig-
ure 16.1). With this tool, new objects can be derived from existing (base)
objects, inheriting their features, including data fields and functions. In the
derived class, one may also define new functions or new versions of func-
tions to override their original versions in the base class. For example, the
”complex” class could actually be derived from the ”point” class, inheriting
some functions from it and rewriting some other functions whenever neces-
sary to override their original version in the base ”point” class. This way, the
”complex” object is nothing but a ”point” object with some extra algebraic
features. (See an exercise at the end of this chapter.)

The ”is a” approach is more in the spirit of object-oriented programming.
Indeed, it focuses on the object and its nature, including its interpretation in
terms of other mathematical fields, such as geometry. This way, the description
of the object becomes more modular and closer to its original mathematical
definition: its elementary features are described in the base class, whereas its
more advanced features are described in the derived class. In fact, this may
lead to a multilevel hierarchy of more and more sophisticated objects built
on top of each other, from the most elementary object at the lowest level,
which can be interpreted in elementary mathematical terms only, to the most
advanced object at the highest level, which enjoys advanced mathematical
features as well.

16.9 Public Derivation

In the definition of the derived class (derivation), the class name in the
header is followed by the reserved word ”:public”, followed by the name of the
base class. In the block that follows, the extra data fields in the derived class
are defined, and its extra member and friend functions are declared or even
defined explicitly, if appropriate.

There are more restrictive derivation patterns, in which the word ”:public”
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before the base-class name is replaced by ”:private” or ”:protected”. However,
because these patterns are not used in the applications in this book, we prefer
to omit them from the present discussion.

16.10 Protected Members of the Base Class

The derived class has no access to the private (field or function) members
of the base class. However, it does have access to “half private” members,
namely, members that are declared as ”protected” in the base-class block by
writing the reserved word ”protected:” before their names. These members are
accessible from derived classes only, but not from ordinary functions or classes
that are not declared as friends of the base class. In fact, if the ”component”
field had been declared as ”protected” in the base ”vector” class, then it could
have been accessed from any derived class, including the ”matrix” class below.

Unfortunately, with the present implementation of the ”vector” class in
Section 16.3, the ”component” field is private by default, as its definition is
preceded by no ”public:” or ”protected:” statement. This is why it can be
accessed from derived classes such as the ”matrix” class below indirectly only,
by calling the public ”set” function.

@
@I 6

�
�	

ordinary functions

members/friends of derived classes

public members protected members private members

FIGURE 16.2: The three possible kinds of members of a class (public,
protected, and private) and their access patterns.

In summary, the members of a class can be of three possible kinds: (a)
public members that can be accessed by everyone; (b) private members that
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are accessible only to members and friends; and (c) protected members that
are accessible to members and friends of derived classes, but not to ordinary
functions (see Figure 16.2).

16.11 Constructing a Derived Object

When the derived object is constructed, the data fields inherited from the
base class are constructed first by the default constructor of the base class.
This is why the derived-class constructor cannot use an initialization list to
initialize these fields; after all, they have already been initialized to their
default values. All that the derived-class constructor can do is, therefore, to
modify these data fields in its block.

If these data fields are only protected base-class members, then this modifi-
cation can be done directly. If, on the other hand, they are private base-class
members, then they can be modified only indirectly, using public member
functions such as the ”set” member function in the ”vector” class.

16.12 Functions of Derived Objects

When a derived object is used as a current object in a call to some function,
the compiler first looks for this function among the derived-class member
functions. If, however, there is no such derived-class member function, then
the compiler interprets the object as a mere base-class object, and looks for
the function among the base-class member functions.

Similarly, when a derived object is passed as a concrete argument to a
function, the compiler first looks for this function among the functions that
indeed take a derived-class argument. Only if no such function is found, the
compiler interprets the passed object as a mere base-class object, and looks
for the function among the functions that take a base-class argument. The
concrete argument may then undergo a default inverse conversion, in which it
is converted implicitly from a derived object into its base-class counterpart.
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16.13 Destroying a Derived Object

When the derived-class destructor is called, the data members inherited
from the base class are destroyed last (in a reversed order to the order in
which they are defined in the base-class block) by an implicit call to the base-
class default destructor. Thus, if there are no more data fields in the derived
class, the block of its destructor can remain empty.

16.14 Inherited Member Functions

The members inherited from the base class are also considered as members
of the derived class in the sense that they can be called freely in the derived-
class block as well. Furthermore, since the derivation is public, the public
members of the base class remain public also in the derived class in the sense
that they can be called from any ordinary function as well.

16.15 Overridden Member Functions

The derived class doesn’t have to inherit all member functions from the
base class. In fact, it can rewrite them in new versions. In this case, the new
version in the derived class overrides the original version in the base class, and
is invoked whenever the function is called in conjunction with derived objects.

One can still call the original version in the base class (even with derived
objects) by adding to the function name the prefix that contains the base-class
name followed by ”::” to let the compiler know that this name refers to the
original version in the base-class block rather than to the new version in the
derived-class block.

16.16 The Matrix Object

The matrix defined in Chapter 9, Section 9.6 can be viewed as a finite
sequence of column vectors. This is why a possible way to implement it is as a
vector whose components are no longer scalars but rather vectors in their own
right. This is where both templates and inheritance prove to be most useful.
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In fact, the matrix can be derived from a vector of vectors. Several arithmetic
operators are then inherited from the base ”vector” class. Some operators,
however, must be rewritten in the derived ”matrix” class.

-
base class

vector of vectors

derived class

matrix

FIGURE 16.3: Inheritance from the base class ”vector<vector>” to the
derived class ”matrix”.

More precisely, the ”matrix” class is derived below from the ”vector<T>”
class, with ’T’ being interpreted no longer as a scalar but rather as a column
vector or a ”vector” object in its own right (Figure 16.3).

Some elementary arithmetic operations, such as addition and subtraction,
can be done column by column, hence can be inherited from the base ”vec-
tor” class, with the columns being treated like standard components in the
base ”vector” class. More specific arithmetic operations like vector-matrix,
matrix-vector, and matrix-matrix multiplication, on the other hand, must be
implemented exactly in the ”matrix” class, following their original mathemat-
ical formulation in Chapter 9, Sections 9.9–9.10.

The derived ”matrix” class is also a template class that uses three parame-
ters: ’T’ to specify the type of the matrix elements, ’N’ to specify the number
of rows, and ’M’ to specify the number of columns. Thus, the ’N’×’M’ matrix
is implemented as a finite sequence of ’M’ ’N’-dimensional column vectors:

template<class T, int N, int M>
class matrix : public vector<vector<T,N>,M>{

The reserved word ”:public” that follows the name of the derived class indi-
cates that this is indeed a public derivation. The name of the base class that
follows indicates that this is indeed an ’M’-dimensional vector, with compo-
nents that are ’N’-dimensional vectors, as required.

public:
matrix(){
} // default constructor

With this default constructor, the user can define a ”matrix” object with no
arguments whatsoever. At the ’{’ symbol that marks the start of the above
empty block, the compiler invokes implicitly the constructor of the base ”vec-
tor” class in Section 16.4. Since no argument is specified, the zero default
value is assigned there to the individual components. Since these components
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are vectors in their own right, the assignment operator at the end of Section
16.5 is invoked to assign the zero value to every component of each column
vector. As a result, the above default constructor constructs the ’N’×’N’ zero
matrix, as required.

Furthermore, the following constructor converts implicitly a base ”vector”
object into the derived ”matrix” object:

matrix(const vector<vector<T,N>,M>&){
} // implicit converter

With this converter, functions of type ”matrix” (that are supposed to return
a ”matrix” object) may return a mere ”vector” object in their definitions,
because it will be converted implicitly to the required ”matrix” object upon
returning.

Next, we turn to more meaningful constructors that also take vector ar-
guments and use them as columns in the constructed matrix. The following
constructor assumes that the number of columns, ’M’, is equal to 2:

matrix(const vector<T, N>&u, const vector<T,N>&v){

As before, the ’N’×2 zero matrix is constructed implicitly at the ’{’ symbol
at the end of this header. Then, the ’N’-dimensional vector arguments ’u’ and
’v’ are assigned to the columns of this matrix, using the public ”set” function
inherited from the base ”vector” class:

set(0,u);
set(1,v);

} // constructor with 2 columns

Similarly, the following constructor takes three vector arguments to construct
an ’N’×3 matrix:

matrix(const vector<T, N>&u,
const vector<T,N>&v,
const vector<T,N>&w){

set(0,u);
set(1,v);
set(2,w);

} // constructor with 3 columns

Next, we define an operator to read an element from the matrix:

const T& operator()(int i,int j) const{
return (*this)[j][i];

} // read the (i,j)th matrix element

Indeed, in the command line in the above block, the ”operator[]” inherited
from the base ”vector” class is applied twice to the current ”matrix” object
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”*this”: the first time with the argument ’j’ to have the ’j’th column, and
the second time with the argument ’i’ to read the ’i’th component in this
column, or the (i,j)th matrix element, as required. Thanks to the reserved
word ”const” at the end of the header (just before the above block), the
current ”matrix” object can never change by this operator: it is a read-only
operator, as required.

Finally, we declare some member update operators that will be defined later
on. Although these operators do the same thing as their original counterparts
in the base ”vector” class, they must be redefined in the derived ”matrix”
class as well only to let the compiler know that the original version in the
”base” class should be applied to the underlying ”vector” object:

const matrix& operator+=(const matrix&);
const matrix& operator-=(const matrix&);
const matrix& operator*=(const T&);
const matrix& operator/=(const T&);

};

This completes the block of the derived ”matrix” class. No copy construc-
tor, assignment operator, or destructor needs to be defined here, because the
original versions in the base ”vector” class work just fine.

The arithmetic update operators to add or subtract a matrix and multiply
or divide by a scalar, on the other hand, must be rewritten, because the
original versions in the base ”vector” class return ”vector” objects rather
than the required ”matrix” objects. The actual definitions of these operators
are left as exercises, with detailed solutions in Section 28.7 in the appendix.

The implementation of the vector-times-matrix, matrix-times-vector, and
matrix-times-matrix multiplication operators is also left as an exercise, with
a detailed solution in Section 28.7 in the appendix.

In the applications studied later in the book, we often use 2× 2 and 3× 3
matrices. Therefore, we introduce the following new types:

typedef matrix<double,2,2> matrix2;
typedef matrix<double,3,3> matrix3;

This way, ”matrix2” stands for a 2 × 2 matrix, and ”matrix3” stands for a
3× 3 matrix.

16.17 Power of a Square Matrix

Here we rewrite the function ”power()” of Chapter 14 as a template func-
tion, so it can be used to compute not only the power xn of a given scalar x but
also the power An of a given square matrix A. Furthermore, we improve on
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the algorithm used in Chapter 14 by using the efficient algorithm introduced
in Chapter 12, Section 12.7, which requires at most 2 log2(n) multiplications.

The required template function is implemented as follows.

template<class T>
const T
power(const T&x, int n){
return n>1 ?

(n%2 ?
x * power(x * x,n/2)

:
power(x * x,n/2))

:
x;

} // compute a power recursively

Note that the function returns the output of a nested ”?:” question. The outer
question checks whether n > 1 or not. If it is, then the inner question (which
is shifted two blank spaces to the right to make the code easy to read) checks
whether n is odd or even, to proceed as in the efficient algorithm in Chapter
12, Section 12.7. If, on the other hand, n = 1, then the returned value is
simply x1 = x, as indeed returned in the last code line in the function.

With the above template function, the user can just write ”power(A,n)”
to have the power An of a square matrix A. This shows very clearly how
templates can be used to write elegant and easy-to-read code.

16.18 Exponent of a Square Matrix

The exponent of a square matrix A of order N is defined by the converging
infinite series

exp(A) = I + A +
A2

2!
+

A3

3!
+ · · · =

∞∑
n=0

An

n!
,

where I is the identity matrix of order N .
This function can be approximated by the Taylor approximation in Chapter

14, Section 14.10 above, provided that the scalar x used there is replaced by
by the matrix A. For this purpose, the present ”matrix” class is most helpful.

In the sequel, we use the term ”l2-norm of the matrix A” (denoted by ‖A‖2)
to refer to the square root of the maximal eigenvalue of AhA (where Ah is the
Hermitian adjoint of A, see Chapter 9, Section 9.13).

As in [33] and in Chapter 14, Section 14.10, in order to approximate well
the above infinite Taylor series by a Taylor polynomial, one must first find a
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sufficiently large integer m such that the l2-norm of A/2m is sufficiently small
(say, smaller than 1/2). Since the l2-norm is not available, we estimate it in
terms of the l1- and l∞-norms:

‖A‖2 ≤
√
‖A‖1‖A‖∞,

where the l1- and l∞-norms are given by

‖A‖1 = max
0≤j<N

N−1∑
i=0

|Ai,j |,

‖A‖∞ = max
0≤i<N

N−1∑
j=0

|Ai,j |.

Thus, by finding an integer m so large that

2
√
‖A‖1‖A‖∞ < 2m,

we guarantee that the l2-norm of A/2m is smaller than 1/2, as required.
The algorithm to approximate exp(A) proceeds as in the algorithm in Chap-

ter 14, Section 14.10, which uses the Taylor polynomial to approximate the
original infinite Taylor series. The scalar x used there is replaced by the square
matrix A. The code used there can be easily adapted to apply also to square
matrices, provided that the required arithmetic operations between matrices
are well defined. This is indeed done in the exercises below by rewriting the
original function used there as a template function.

16.19 Exercises

1. Implement complex numbers as a template class ”complex<T>”, where
’T’ is the type of the real and imaginary parts. Define the required arith-
metic operations and test them on objects of type ”complex<float>” and
”complex<double>”.

2. Complete the missing arithmetic operators in Section 16.6, such as sub-
traction of vectors and multiplication and division by a scalar. The solu-
tions are given in Section 28.6 in the appendix.

3. Use the observation that a complex number can also be interpreted geo-
metrically as a point in the Cartesian plane to reimplement the ”complex”
class using inheritance: derive it from the ”point” class in Section 16.7,
and rewrite the required arithmetic operations to override their original
”point” versions.

4. Implement the operators that add and subtract two matrices. The solu-
tions are given in Section 28.7 in the appendix.
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5. Implement the vector-matrix, matrix-vector, matrix-matrix, and scalar-
matrix products that are missing in the code in Section 16.16. The solu-
tions are given in Section 28.7 in the appendix.

6. Write functions that return the transpose, determinant, and inverse of
2×2 matrices (Chapter 9, Sections 9.23–9.24). The solution can be found
in Section 28.8 in the appendix.

7. Write functions that return the transpose, determinant, and inverse of
3×3 matrices (Chapter 9, Sections 9.23–9.24). The solution can be found
in Section 28.9 in the appendix.

8. Redefine the ”matrix” class to have a two-dimensional array to store its
elements, using the ”has a” rather than the ”is a” approach. What are
the advantages and disadvantages of each implementation?

9. Write an ”operator&” function that takes two 3-d vectors and returns
their vector product (Chapter 9, Section 9.25). The solution can be found
in Section 28.10 in the appendix.

10. Rewrite the ”expTaylor” function in Chapter 14, Section 14.10, as a tem-
plate function that takes an argument of type ’T’. The solution can be
found in Section 28.11 in the appendix.

11. Use your code with ’T’ being the ”complex” type. Verify that, for an
imaginary argument of the form ix (where i =

√
−1 and x is some real

number), you indeed get

exp(ix) = cos(x) + i · sin(x).

12. Apply your code to an argument A of type ”matrix” to compute exp(A).
Make sure that all the required arithmetic operations between matrices
are available in your code.

13. Apply your code also to objects of type ”matrix<complex,4,4>”, and
verify that, for a complex parameter λ,

exp




λ
1 λ

1 λ
1 λ


 = exp(λ)


1

1/1! 1
1/2! 1/1! 1
1/3! 1/2! 1/1! 1


(the blank spaces in the above matrices indicate zero elements).
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Chapter 17

Dynamic Vectors and Lists

In object-oriented languages such as C++, the programmer has the opportu-
nity to implement new objects. These objects can then be used as if they were
part of the standard language. In fact, every user who has permission can use
them in his/her own application. Furthermore, users can use these objects to
implement more and more complicated objects to form a complete hierarchy
of useful objects. This is called multilevel programming.

Well-implemented objects must be ready to be used by any user easily and
efficiently. In particular, they must be sufficiently flexible to give the user the
freedom to use them as he/she may wish. For example, in many cases the user
might want to specify the object size in run time rather than in compilation
time. This way, the user can use information available in run-time to specify
the object size more economically. This kind of dynamic objects is discussed
in this chapter.

The dynamic vector introduced below improves on the standard vector im-
plemented above in the opportunity to determine its dimension dynamically
in run time rather than in compilation time. Unfortunately, both the standard
vector and the dynamic vector must contain entries that are all of the same
size. To have the freedom to use entries of different sizes, one must introduce
a yet more flexible object: the list.

Below we introduce two kinds of lists: the standard list, whose number of
entries must be determined once and for all, and the more flexible linked list,
which can grow by taking more items and then shrink again by dropping items
dynamically in run time. Furthermore, the recursive definition of the linked
list is the key to many important features and functions, which will prove
most useful later on in the book.

17.1 Dynamic Vectors

The implementation of the ”vector” object in Chapter 16, Section 16.3
requires the a priori knowledge of its dimension ’N’ in compilation time. In
many cases, however, the dimension is available in run time only. Dynamic
vectors whose dimension is specified only in run time are clearly necessary.

359
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In this section, we implement dynamic vectors, whose dimension is no longer
a template parameter but is rather stored in a private data field. This way,
the dynamic-vector object contains not only the components of the vector but
also an extra integer to store the dimension of the vector. This integer field
can be set in run time, as required.

Because the dimension of the dynamic vector is not yet available in compi-
lation time, the memory required to implement it cannot be allocated as yet.
This is why the memory must be allocated in run time, using the reserved
word ”new”. The ”new” function, available in the C++ compiler, allocates
sufficient memory to store a specified object, and returns its address. For
example, the command line

double* p = new double;

allocates memory for a ”double” variable and stores its address n the pointer-
to-double ’p’. To access this variable, one then needs to write ”*p”.

In dynamic vectors, templates are used only to specify the type of the com-
ponents. (This type is denoted by ’T’ in the ”dynamicVector” class below.))
The number of components, on the other hand, is determined dynamically
during run time, hence requires no template parameter.

The data fields in the ”dynamicVector” class below are declared as ”pro-
tected” (rather than strictly private) to make them accessible from derived
classes to be defined later. Two data fields are used: the integer ”dimension”
that indicates the dimension of the vector and the pointer ”component” that
points to the components of the vector.

Because the dimension is not yet available, the ”component” field must be
declared as a pointer-to-T rather than the array-of-T’s used in the ”vector”
class in Chapter 16, Section 16.3. Only upon constructing a concrete dynamic-
vector object the number of components is specified and sufficient memory to
store them is allocated.

template<class T> class dynamicVector{
protected:
int dimension;
T* component;

public:

First, we declare the constructors and assignment operators. (The detailed
definition is deferred until later.)

dynamicVector(int, const T&);
dynamicVector(const dynamicVector&);
const dynamicVector& operator=(const dynamicVector&);
const dynamicVector& operator=(const T&);

Because the destructor is very short, it is defined here in the class block. In
fact, it contains only one command line, to delete the pointer ”component”
and free the memory it occupies:
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~dynamicVector(){
delete [] component;

} // destructor

In fact, the ”delete[]” command available in the C++ compiler deletes the
entire ”component” array and frees the memory occupied by it for future use.
Note that the ”dimension” field doesn’t have to be removed explicitly. Indeed,
because it is not a pointer, it is removed implicitly by the default destructor
of the C++ compiler, which is invoked automatically at the end of every call
to the above destructor.

Because the ”dimension” field is declared as ”protected”, we need a public
function to access it even from ordinary classes that are not derived from the
”dynamicVector” class:

int dim() const{
return dimension;

} // return the dimension

This public function can be called even from ordinary functions to read the
dimension of dynamic-vector objects.

Furthermore, the ”operator()” defined below returns a nonconstant refer-
ence to the ’i’th component in the current dynamic vector, which can be used
not only to read but also to change this component. The ”operator[]” de-
fined next, on the other hand, returns a constant (rather than nonconstant)
reference to the ’i’th component, so it can be used only to read it:

T& operator()(int i){
return component[i];

} // read/write ith component

const T& operator[](int i) const{
return component[i];

} // read only ith component

Finally, we declare some member arithmetic operators on the current dynamic
vector. The detailed definition is deferred until later.

const dynamicVector& operator+=(const dynamicVector&);
const dynamicVector& operator-=(const dynamicVector&);
const dynamicVector& operator*=(const T&);
const dynamicVector& operator/=(const T&);

};

This concludes the block of the ”dynamicVector” class.
Next, we define the functions that are only declared in the class block above.

In the constructor defined below, in particular, the memory required to store
the array of components is allocated dynamically in the initialization list,
using the ”new” command:
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template<class T>
dynamicVector<T>::dynamicVector(

int dim = 0, const T& a = 0)
: dimension(dim), component(dim ? new T[dim] : 0){

for(int i = 0; i < dim; i++)
component[i] = a;

} // constructor

A similar approach is used in the copy constructor:

template<class T>
dynamicVector<T>::dynamicVector(const dynamicVector<T>& v)
: dimension(v.dimension),
component(v.dimension ? new T[v.dimension] : 0){
for(int i = 0; i < v.dimension; i++)
component[i] = v.component[i];

} // copy constructor

The assignment operator is defined as follows:

template<class T>
const dynamicVector<T>&
dynamicVector<T>::operator=(const dynamicVector<T>& v){

There is one case, though, in which the assignment operator needs to do
nothing. This is the case in which the user writes a trivial command of the
form ”u = u”. To exclude this case, we use the following ”if” question:

if(this != &v){

This ”if” block is entered only if the current dynamic vector is different from
the dynamic vector that is passed to the function as an argument, which is
indeed the nontrivial case, invoked by a user who writes a meaningful as-
signment command of the form ”u = v”. Once we have made sure that the
assignment operator is not called by a trivial call of the form ”u = u”, we
must also modify the dimension of the current vector to be the same as that
of the argument vector ’v’:

if(dimension != v.dimension){
delete [] component;
component = new T[v.dimension];

}

This way, the array ”component[]” contains the same number of entries as the
array ”v.component[]”, and is ready to be filled with the corresponding values
in a standard loop:
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for(int i = 0; i < v.dimension; i++)
component[i] = v.component[i];

dimension = v.dimension;
}
return *this;

} // assignment operator

This completes the definition of the assignment operator that takes a dynamic-
vector argument. Next, we also define another assignment operator that takes
a scalar argument, and assigns the same value to all the components in the
current dynamic vector:

template<class T>
const dynamicVector<T>&
dynamicVector<T>::operator=(const T& a){
for(int i = 0; i < dimension; i++)
component[i] = a;

return *this;
} // assignment operator with a scalar argument

Furthermore, we implement some useful member arithmetic operators on the
current dynamic vector:

template<class T>
const dynamicVector<T>&
dynamicVector<T>::operator+=( const dynamicVector<T>&v){

for(int i = 0; i < dimension; i++)
component[i] += v[i];

return *this;
}// adding a dynamicVector to the current one

With this operator, the user can write commands like ”u + = v”, where ’u’
and ’v’ are dynamic vectors of the same dimension.

We don’t bother here to verify that the dimension of the argument vector is
the same as that of the current vector before they are added to each other. The
careful programmer is advised to make sure in the beginning of the function
block that this is indeed the case, to avoid all sorts of bugs.

The above member operator is now used in an ordinary operator to add
two dynamic vectors:

template<class T>
const dynamicVector<T>
operator+(const dynamicVector<T>&u,

const dynamicVector<T>&v){
return dynamicVector<T>(u) += v;

} // dynamicVector plus dynamicVector
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With this operator, the user can write ”u + v”, where ’u’ and ’v’ are dynamic
vectors of the same dimension.

Next, we implement the unary negative operator:

template<class T>
const dynamicVector<T>
operator-(const dynamicVector<T>&u){
return dynamicVector<T>(u) *= -1.;

} // negative of a dynamicVector

With this operator, the user can write ”−u” to have the negative of the
dynamic vector ’u’.

Finally, we implement a function that prints a dynamic vector to the screen:

template<class T>
void print(const dynamicVector<T>&v){
print("(");
for(int i = 0;i < v.dim(); i++){
printf("v[%d]=",i);
print(v[i]);

}
print(")\n");

} // printing a dynamicVector

Other useful arithmetic operations, such as subtraction, multiplication and di-
vision by scalar, and inner product are implemented in the exercises. Assuming
that they are already available, one can write all sorts of vector operations as
follows:

int main(){
dynamicVector<double> v(3,1.);
dynamicVector<double> u;
u=2.*v;
printf("v:\n");
print(v);
printf("u:\n");
print(u);
printf("u+v:\n");
print(u+v);
printf("u-v:\n");
print(u-v);
printf("u*v=%f\n",u*v);
return 0;

}
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17.2 Ordinary Lists

The vector and dynamic-vector above are implemented as arrays of compo-
nents of type ’T’. By definition, an array in C (as well as other programming
languages) must contain entries of the same type and size. No array can con-
tain entries that occupy different amounts of memory.

In many applications, however, one needs to use sequences of objects of
different sizes. For example, one may need to implement a sequence of vec-
tors of different dimensions. Such sequences cannot be implemented in (even
dynamic) vectors; a more flexible data structure is necessary.

-

-

-

-

-

-

-

tt
tt
tt
t

i

pointers ’T’ objects

FIGURE 17.1: A list: the arrows stand for pointers that point to the bullets,
which stand for objects of type ’T’ (to be specified later in compilation time).

The required data structure is implemented in the ”list” class below. This
class contains an array of entries of type pointer-to-’T’ rather than ’T’ (see
Figure 17.1). Although objects of type ’T’ may have different sizes (e.g., when
’T’ is a dynamic vector), their addresses are all of the same type and size:
in fact, they are just integer numbers associated with certain places in the
computer memory.

Although the template parameter ’T’ must be specified during compilation
time, concrete objects of type ’T’ are placed in the addresses in the array in
the list during run time only. For example, if ’T’ is specified in compilation
time as ”dynamicVector”, then the dimensions of the ”dynamicVector” objects
in the list are specified only during run time, using the constructor of the
”dynamicVector” class. Then, their addresses are placed in the array in the
list.
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The length of the list (the number of pointers-to-’T’ in the array in it) can
also be determined dynamically in run time. Indeed, as in the ”dynamicVec-
tor” class, an extra integer field stores the number of items in the list. Thus,
the ”list” class contains two protected data fields: ”number” to indicate the
number of items in the list, and ”item” to store their addresses. These fields
are declared as ”protected” (rather than private) to allow accessing them from
derived classes later on.

template<class T> class list{
protected:
int number;
T** item;

public:

The first constructor takes only one integer parameter, ’n’, to be used in the
initialization list to determine the number of items to be contained in the
future list. If ’n’ is zero, then nothing is constructed. (This is also the default
case.) If, on the other hand, ’n’ is nonzero, then the ”new” command is used
to allocate sufficient memory for ’n’ pointers-to-’T’. These pointers point to
nothing as yet, that is, they contain no meaningful address of any concrete
item.

list(int n=0):number(n), item(n ? new T*[n]:0){
} // constructor

Next, we move on to a more meaningful constructor, which takes two argu-
ments: ’n’, to specify the number of items in the constructed list, and ’t’, to
initialize these items with a meaningful value. First, ’n’ is used in the ini-
tialization list as above to allocate sufficient memory for ”item”, the array of
addresses. Then, ’t’ is used in the block of the function to initialize the items
in the list, using the ”new” command and the copy constructor of the ’T’
class:

list(int n, const T&t)
: number(n), item(n ? new T*[n] : 0){
for(int i=0; i<number; i++)
item[i] = new T(t);

} // constructor with a T argument

Next, we declare the copy constructor and the assignment operator. The de-
tailed definitions are deferred until later.

list(const list<T>&);
const list<T>& operator=(const list<T>&);

Next, we define the destructor. First, the ”delete” command available in the
C++ compiler is called in a standard loop to delete the pointers in the array in
the list. Once such a pointer is deleted, the destructor of the ’T’ class is invoked
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automatically implicitly to destroy the item pointed at by it. Once deleted,
these pointers point to nothing, or contain meaningless (or zero) addresses.
Still, they occupy valuable memory, which should be released for future use.
For this, the ”delete” command is called once again to delete the entire array
of pointers:

~list(){
for(int i=0; i<number; i++)
delete item[i];

delete [] item;
} // destructor

Because the ”number” field is protected, it cannot be read from ordinary
(nonmember, nonfriend) functions. The only way to read it is through the
following public ”size()” function:

int size() const{
return number;

} // size of list

Similarly, the items in the list, whose addresses are stored in the protected
”item” field, can be accessed from ordinary functions only through the public
”operator()” (to read/write) or ”operator[]” (to read only) below:

T& operator()(int i){
if(item[i])return *(item[i]);

} // read/write ith item

const T& operator[](int i)const{
if(item[i])return *(item[i]);

} // read only ith item
};

The user should be careful to call ”l(i)” or ”l[i]” only for a list ’l’ that contains
at least ’i’ items; otherwise, a bug can be encountered. To avoid such bugs, the
careful programmer is advised to verify in the beginning of these operators
that ’i’ is indeed smaller than the number of items in the current list, and
issue an error message if it is not. These details are left as an exercise.

This concludes the block of the ”list” class. The definition of the copy
constructor declared in it is similar to that of the above constructor:

template<class T>
list<T>::list(const list<T>&l):number(l.number),

item(l.number ? new T*[l.number] : 0){
for(int i=0; i<l.number; i++)
if(l.item[i])
item[i] = new T(*l.item[i]);
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else
item[i] = 0;

} // copy constructor

Here is also the definition of the assignment operator declared above:

template<class T>
const list<T>&
list<T>::operator=(const list<T>& l){

If the user has inadvertently made a trivial call such as ”l = l”, then nothing
should be assigned. If, on the other hand, a nontrivial call is made, then the
following ”if” block is entered:

if(this != &l){

First, we modify the current list object to contain the same number of items
as the list ’l’ that is passed to the function as an argument.

if(number != l.number){
delete [] item;
item = new T*[l.number];

}

We are now ready to copy the items in ’l’ also to the current ”list” object:

for(int i = 0; i < l.number; i++)
if(l.item[i])

item[i] = new T(*l.item[i]);
else
item[i] = 0;

number = l.number;
}

Finally, we also return a constant reference to the current ”list” object:

return *this;
} // assignment operator

With this implementation, the user can write a code line of the form ”l3 = l2
= l1” to assign the list ”l1” to both the lists ”l2” and ”l3”.

The following ordinary function prints the items in the list to the screen:

template<class T>
void print(const list<T>&l){
for(int i=0; i<l.size(); i++){
printf("i=%d:\n",i);
print(l[i]);

}
} // printing a list
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17.3 Linked Lists

The ”list” object in Section 17.2 is implemented as an array of pointers
to (or addresses of) objects of type ’T’ (to be specified later in compilation
time). Unfortunately, in many cases an array is not flexible enough for this
purpose. Indeed, new items cannot be easily inserted to the list, and old items
are not easily removed from it. Furthermore, the number of items in the list is
determined once and for all upon construction, and cannot be easily changed
later on. These drawbacks make the ”list” class unsuitable for many important
applications. A more flexible kind of list is clearly necessary. This is the linked
list.

first item t
pointer - t

- t
- t

. . . t
- t

-null (zero) pointer d nothing
FIGURE 17.2: A linked list: each item (denoted by a bullet) contains a

pointer (denoted by an arrow) to point to the next item [except of the last item,
which contains the null (or zero) pointer].

Unlike the ordinary lists implemented above, the linked list doesn’t use an
array at all. Instead, each item in the linked list contains a pointer that points
to the next item (see Figure 17.2). As we’ll see below, this structure allows
inserting any number of new, as well as dropping old ones.

Accessing items, on the other hand, is more complicated in a linked list
than in an ordinary list. Indeed, in an ordinary list, the ith item can be
accessed through its address, stored in the ith entry in the array of addresses.
In a linked list, on the other hand, one must start from the first item and
”jump” from item to item until the required item is reached. Clearly, this
access pattern is more complicated and expensive. Fortunately, as we’ll see
below, most functions operate on the linked list as a complete object, avoiding
accessing individual items.

The access patterns used in both ordinary and linked lists are called “indi-
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rect indexing,” because the individual items are accessed indirectly through
their addresses. Clearly, this approach is less efficient than the direct indexing
used in arrays, in which the items are stored consecutively in the computer
memory, hence can be scanned one by one in efficient loops. Nevertheless,
the advantages of indirect indexing far exceed this disadvantage. Indeed, the
freedom to insert and remove items, which is a prominent feature in linked
lists, is essential in implementing many useful (recursive) objects later on in
the book.

The linked list is implemented in the template class ”linkedList” defined
below. The items in the linked list are of type ’T’, to be defined later in
compilation time.

The ”linkedList” class contains two data fields: ”item”, to contain the first
item in the linked list, and ”next”, to contain the address of the rest of the
linked list. Both data fields are declared as ”protected” (rather than strictly
private) to be accessible from derived classes as well.

The linked list is implemented as a recursive object. Indeed, its definition
uses mathematical induction: assuming that its “tail” (the shorter linked list
that contains the second item, the third item, the fourth item, etc.) is well
defined in the induction hypothesis, the original linked list is defined to contain
the first item (in the field ”item”) and a pointer to this tail (in the field
”next”):

template<class T> class linkedList{
protected:
T item;
linkedList* next;

public:

First, we define a default constructor:

linkedList():next(0){
} // default constructor

With this constructor, the user can write commands like ”linkedList<double>
l” to define a trivial linked list ’l’ with no items in it.

Next, we define a more meaningful constructor that takes two arguments:
an argument of type ’T’ to specify the first item in the constructed list, and
a pointer-to-linked-list to define the rest of the constructed list:

linkedList(T&t, linkedList* N=0)
: item(t),next(N){

} // constructor

In particular, when the second argument in this constructor is missing, it is
assumed to be the zero (meaningless) pointer. This way, the user can write
commands like ”linkedList<double> l(1.)” to construct a linked list ’l’ with
the only item 1. in it.
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The first item in the linked list can be read (although not changed) and
used in the definitions of ordinary (nonmember, nonfriend) functions through
the public member function ”operator()”:

const T& operator()() const{
return item;

} // read item field

Indeed, with this operator, the user can write ”l()” to obtain a constant ref-
erence to the first item in the linked list ’l’.

Similarly, the rest of the linked list can be read (although not changed)
through the following public function:

const linkedList* readNext() const{
return next;

} // read next

Indeed, with this function, the user can write ”l.readNext()” to have the
address of the linked list that contains the tail of ’l’.

Next, we declare the assignment operator:

const linkedList& operator=(const linkedList&);

to be defined later on.

17.4 The Copy Constructor

The recursive pattern of the linked list is particularly useful in the copy
constructor defined below. Indeed, thanks to this pattern, one only needs to
copy the first item in the linked list (using the copy constructor of the ’T’
class) and to use recursion to copy the tail:

linkedList(const linkedList&l):item(l()),
next(l.next ? new linkedList(*l.next):0){

} // copy constructor

In fact, everything is done in the initialization list: first, the first item in ’l’,
”l()”, is copied into ”item”, the first item in the constructed list. Then, the
tail of ’l’, pointed at by ”l.next”, is copied recursively into a new tail, whose
address is stored in ”next”. This completes the copying of the entire linked
list ’l’ into a new linked list, as required.
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17.5 The Destructor

The recursive structure of the linked list is also useful in the destructor.
Indeed, once the pointer ”next” is deleted, the destructor is invoked automat-
ically to destroy recursively the entire tail. Then, the destructor of the ’T’
class is invoked implicitly to destroy the first item, ”item”, as well:

~linkedList(){
delete next;
next = 0;

} // destructor

17.6 Recursive Member Functions

The recursive pattern of the linked list is also useful to define a function
that returns the last item (embedded in a trivial linked list of one item only):

linkedList& last(){
return next ? next->last() : *this;

} // last item

Indeed, it can be shown by mathematical induction on the total number of
items that this function indeed returns the last item: if the total number of
items is one, then ”next” must be the zero pointer, so the current linked
list, which contains the only item ”item”, is returned, as required. If, on the
other hand, the total number of items is greater than one, then the induction
hypothesis implies that the last item in the tail is returned. This item is also
the last item in the original linked list, as required.

A similar proof shows that the following function counts the total number
of items in the linked list:

int length() const{
return next ? next->length() + 1 : 1;

} // number of items

The above two functions are now used to form a function that appends a new
item at the end of the linked list:

void append(T&t){
last().next = new linkedList(t);

} // append a new item
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17.7 Inserting New Items

The recursive structure of the linked list is also useful in inserting new items
into it. The following function places the new item right after the first item
in the linked list:

void insertNextItem(T&t){
next = new linkedList(t,next);

} // insert item in the second place

The above command line uses the second constructor in Section 17.3 to replace
the current tail by a slightly longer one, with the new item ’t’ in its beginning,
as required.

The following function places the new item at the beginning of the current
linked list:

void insertFirstItem(T&t){

First, the second constructor in Section 17.3 is used to duplicate the first item,
”item”:

next = new linkedList(item,next);

The first copy of ”item” is now replaced by the new item, ’t’, using the as-
signment operator of the ’T’ class:

item = t;
} // insert a new item at the beginning

The block of the ”linkedList” class ends with the declaration of some more
member functions, to be defined later:

void dropNextItem();
void dropFirstItem();
const linkedList& operator+=(linkedList&);
linkedList& order(int);

};

This concludes the block of the ”linkedList” class.
One may ask here: why isn’t the ’T’ argument in the above functions (and in

the above constructor) declared as a constant? After all, it is never changed
when inserted into the current linked list! Declaring it as a constant could
protect it from inadvertent changes, couldn’t it?

The answer is that later on we’ll derive from the ”linkedList” class a non-
standard class with a constructor that does change its argument. Furthermore,
in this class, an inserted object may change as well. This is why this class can’t
inherit the above functions unless they use a nonconstant argument.
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17.8 The Assignment Operator

The assignment operator defined below also uses the recursive structure of
the linked list: first, the first item in the linked list is assigned. Then, the tail
of the linked list is assigned recursively:

template<class T>
const linkedList<T>&
linkedList<T>::operator=(const linkedList<T>&L){

If the user writes inadvertently a trivial assignment such as ”l = l”, then
nothing should be done. If, on the other hand, the assignment is nontrivial,
then the following ”if” block is entered:

if(this != &L){

First, the first item in the current linked list is assigned the same value as in
the first item in the argument ’L’:

item = L();

Next, the tail of ’L’ is assigned to the tail of the current linked list as well.
To do this, there are two cases: if the current linked list does have an old tail,
then the assignment operator is called recursively (that is, provided that ’L’
indeed has a nontrivial tail):

if(next){
if(L.next)
*next = *L.next;

else{
delete next;
next = 0;

}
}

If, on the other hand, the current linked list has no tail, then the tail of ’L’ is
appended to it using the copy constructor and the ”new” command:

else
if(L.next)next = new linkedList(*L.next);

}

Finally, a constant reference to the current linked list is also returned:

return *this;
} // assignment operator

This way, the user can write ”l3 = l2 = l1” to assign the linked list ”l1” to
both ”l2” and ”l3”.
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17.9 Dropping Items

Unlike in ordinary lists, in linked lists one can not only insert new items
but also drop old ones if required easily and efficiently. For example, here is
the function that drops the second item in the linked list:

template<class T>
void linkedList<T>::dropNextItem(){

First, we must ask if there is indeed a second item to drop:

if(next){

Now, there are two possible cases: if there is also a third item in the linked
list,

if(next->next){

then we must also make sure that it is not lost when the second item (which
points to it) is removed. For this purpose, we keep the address of the tail of
the linked list also in a local pointer, named ”keep”:

linkedList<T>* keep = next;

This way, we can replace the original tail by a yet shorter tail that doesn’t
contain the second item in the original list:

next = next->next;

The removed item, however, still occupies valuable memory. Fortunately, we
have been careful to keep track of it in the local pointer ”keep”. This pointer
can now be used to destroy it completely, using the destructor of the ’T’ class:

keep->item.~T();
}

This way, ”next” points to the third item in the original list rather than to
the second one, as required.

If, on the other hand, there is no third item in the original list, then the
entire tail (which contains the second item only) is removed:

else{
delete next;
next = 0;

}
}

If, on the other hand, there is no second item to drop, then an error message
is printed to the screen:
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else
printf("error: cannot drop nonexisting next item\n");

} // drop the second item from the linked list

This completes the function that drops the second item in the linked list. In
fact, this function can also be used to drop the third item by applying it to
the tail of the current linked list, pointed at by ”next”, and so on.

Furthermore, the above function is also useful in dropping the first item in
the linked list:

template<class T>
void linkedList<T>::dropFirstItem(){

Indeed, if there is a second item in the current linked list,

if(next){

then a duplicate copy of it is stored in the first item as well:

item = next->item;

Then, the ”dropNextItem” function is invoked to drop the second duplicate
copy, as required:

dropNextItem();
}

If, on the other hand, there is no second item in the original list, then the
first item cannot be dropped, or the list would remain completely empty.
Therefore, an error message should be printed:

else
printf("error: cannot drop the only item.\n");

} // drop the first item in the linked list

So, we see that the linked-list object must contain at least one item; any
attempt to remove this item would end in a bug. Thus, the user must be
careful not to do it. Although not ideal, this implementation is good enough
for our applications in this book. Below, however, we also introduce the stack
object, which improves on the linked list, and can be completely emptied if
necessary.

The recursive structure of the linked list is also useful to print it onto the
screen. Indeed, after the first item has been printed, the ”print” function is
applied recursively to the tail, to print the rest of the items in the linked list
as well:

template<class T>
void print(const linkedList<T>&l){
printf("item:\n");
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print(l());
if(l.readNext())print(*l.readNext());

} // print a linked list recursively

Here is an example that shows how linked lists are used in practice:

int main(){
linkedList<double> c(3.);
c.append(5.);
c.append(6.);
c.dropFirstItem();
print(c);
return 0;

}

This code first produces a linked list of items of type ”double”, with the items
3, 5, and 6 in it. (Because 3 < 5 < 6, such a list is referred to as an ordered
list.) Then, the first item from the list. Finally, the remaining items 5 and 6
are printed onto the screen.

17.10 The Merging Problem

Assume that the class ’T’ used in the linked list has a well-defined ”operator<”
in it to impose a complete order on objects of type ’T’. For example, if ’T’ is
interpreted as the integer type, then ’<’ could have the usual meaning: m < n
means that m is smaller than n. An ordered list is a list that preserves this
order in the sense that a smaller item (in terms of the ’<’ operator in class
’T’) must appear before a larger item in the list. For example, 3, 5, 6 is an
ordered list, whereas 5, 3, 6 is not.

In the merging problem, two ordered lists should be merged efficiently into
one ordered list. As we’ll see below, the linked-list object is quite suitable for
this purpose, thanks to the opportunity to introduce new items and drop old
ones easily.

In the following, it is assumed that the type ’T’ supports a complete priority
order; that is, every two ’T’ objects can be compared by the ’<’, ’>’, or ”==”
binary operators. It is also assumed that the current ”linkedList” object and
the ”linkedList” argument that is merged into it are well ordered in the sense
that each item is smaller than the next item.

It is also assumed that the ’T’ class supports the ”+ =” operator. This way,
if two equal items are encountered during the merging process, then they can
be simply added to each other to form a new item that contains their sum.
This operator is used in the ”+ =” operator defined below in the ”linkedList”
class, which merges the argument linked list into the current linked list.
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FIGURE 17.3: Merging two ordered linked lists into one ordered linked list.
The items in the top linked list (the current object) are scanned by the pointer

”runner” in the outer loop. The items in the bottom linked list ’L’ (the argument)
are scanned by the pointer ”Lrunner” in the inner loop, and inserted into the right

places.

The code that implements the merging uses two pointers to scan the items
in the linked lists (see Figure 17.3). The main pointer, named ”runner”, scans
the items in the current linked list. The room between the item pointed at
by ”runner” and the next item should be filled by items from the second
linked list that is passed to the function as an argument. For this purpose,
a secondary pointer, named ”Lrunner”, is used to scan the second linked list
and find those items that indeed belong there in terms of order. These items
are then inserted one by one into this room.

In case an item in the second linked list has the same priority order ’<’ as
an existing item in the current linked list, that is, it is equal to it in terms
of the ”==” operator of the ’T’ class, it is just added to it, using the ”+=”
operator of the ’T’ class.

template<class T>
const linkedList<T>&
linkedList<T>::operator+=(linkedList<T>&L){
linkedList<T>* runner = this;
linkedList<T>* Lrunner = &L;

Here, the local pointers are defined before the loops in which they are used,
because they’ll be needed also after these loops terminate. In particular, the
local pointer ”runner” points to the current linked list. Furthermore, the local
pointer ”Lrunner” points initially to the linked list ’L’ that is passed to the
function as an argument. However, in order to start the merging process, we
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must first make sure that the first item in the current linked list ”item”, is
prior (in terms of the priority order ’<’) to the first item in ’L’, ”L.item”. If
this is not the case, then the merging process must start by placing ”L.item”
at the beginning of the current linked list and advancing ”Lrunner” to the
tail of ’L’:

if(L.item < item){
insertFirstItem(L.item);
Lrunner = L.next;

}

We are now ready to start the merging process. For this, we use an outer
loop to scan the items in the current linked list. The local pointer used in this
loop, ”runner”, already points to the first relevant item in the current linked
list. It is then advanced from item to item in it, until it points to the shortest
possible tail that contains only the last item in the original list:

for(; runner->next; runner=runner->next){

We are now ready to fill the room between the item pointed at by ”runner”
and the next item in the current linked list with items from ’L’ that belong
there in terms of the ’<’ priority order. The first item considered for this is the
item pointed at by ”Lrunner”. Indeed, if this item is equal to the item pointed
at by ”runner” (in terms of the ”==” operator in the ’T’ class), then it is
just added to it (using the ”+ =” operator of the ’T’ class), and ”Lrunner”
is advanced to the next item in ’L’:

if(Lrunner&&(Lrunner->item == runner->item)){
runner->item += Lrunner->item;
Lrunner = Lrunner->next;

}

Furthermore, an inner loop is used to copy from ’L’ the items that belong
in between the item pointed at by ”runner” and the next item in the cur-
rent linked list. Fortunately, the pointer used in this loop, ”Lrunner”, already
points to the first item that should be copied:

for(; Lrunner&&(Lrunner->item < runner->next->item);
Lrunner = Lrunner->next){

runner->insertNextItem(Lrunner->item);

Furthermore, in this inner loop, once an item from ’L’ has been copied to the
current linked list, the ”runner” pointer must be advanced to skip it:

runner = runner->next;
}
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This concludes the inner loop. By the end of it, ”Lrunner” points either to
nothing or to an item in ’L’ that is too large to belong in between the item
pointed at by ”runner” and the next item in the current linked list. In fact,
such an item must be copied the next time the inner loop is entered, that is,
in the next step in the outer loop:

}

This concludes the outer loop as well.
Still, ’L’ may contain items larger than or equal to the largest item in the

current linked list. The short tail that contains these items only (if they exist)
is now pointed at by ”Lrunner”. Furthermore, ”runner” points to the last
item in the current linked list. Thus, the remaining items in ’L’ can be either
added to the last item in the current linked list by

if(Lrunner&&(Lrunner->item == runner->item)){
runner->item += Lrunner->item;
Lrunner = Lrunner->next;

}

or appended to the end of the current linked list by

if(Lrunner)
runner->next = new linkedList<T>(*Lrunner);

Finally, the function also returns a constant reference to the current linked
list in its up-to-date state, with ’L’ merged into it:

return *this;
} // merge two linked lists while preserving order

17.11 The Ordering Problem

Assume that a disordered list of items is given. The ordering problem is to
reorder the items according to the priority order ’<’, so that a given item is
smaller than the next item. Clearly, this must be done as efficiently as possible.

Still, having an efficient algorithm to order the list properly is not enough.
Indeed, the algorithm must also be implemented efficiently on the computer.
For this purpose, the linked-list object proves to be most suitable, thanks to
the opportunity to insert new items and drop old ones efficiently.

The recursive ordering algorithm is as follows (see Figure 17.4). First, the
original list is split into two sublists. Then, the ordering algorithm is used
recursively to put these sublists in the correct order. Finally, the sublists are
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FIGURE 17.4: The ordering algorithm: the original list is split into two
sublists, which are first ordered properly by a recursive call and then merged into

one well-ordered list.

merged into one well-ordered list. For this, the ”+ =” operator defined above
is most useful.

This recursion is implemented in the ”order()” member function below. The
integer argument ”length” passed to the function stands for the number of
items in the current linked list. This is why when the ”order()” function is ap-
plied recursively to the sublists it should take the smaller argument ”length”/2
or so.

template<class T>
linkedList<T>&
linkedList<T>::order(int length){

If the list contains one item only, then it is already well ordered, so nothing
should be done. If, on the other hand, it contains more than one item, then
it should be split into two sublists. Clearly, the first sublist is pointed at
by ”this”, the address of the current linked list. Finding the address of the
second sublist, however, is more tricky. To do this, we define the local pointer
”runner”, which is initialized as ”this”, and is then advanced gradually from
item to item until it reaches the middle of the original list:

if(length>1){
linkedList<T>* runner = this;
for(int i=0; i<length/2-1; i++)
runner = runner->next;

By the end of this loop, ”runner” points to the last item in the first subloop.
Thus, it can be used to define the local pointer ”second”, which points to the
second sublist:

linkedList<T>* second = runner->next;

© 2009 by Taylor and Francis Group, LLC



382 CHAPTER 17. DYNAMIC VECTORS AND LISTS

Furthermore, ”runner” can also be used to remove the second sublist from the
original list, so that ”this” points to the first sublist only, rather than to the
entire list:

runner->next = 0;

We are now ready for the recursion. Indeed, the present ”order()” function is
applied recursively to the first sublist, pointed at by ”this”:

order(length/2);

Furthermore, thanks to the fact that (as we’ll see below) the ”order()” function
also returns a reference to the well-ordered list, the second sublist can be
ordered recursively and merged into the first sublist (pointed at by ”this”),
to form one well-ordered list, as required:

*this += second->order(length-length/2);
}

Finally, the function also returns a reference to the current linked list in its
final correct order:

return *this;
} // order a disordered linked list

17.12 Stacks

The stack object discussed in Chapter 1, Section 1.8, can now be derived
from the ”linkedList” class. This would indeed provide the stack object with
its desired properties: having an unlimited capacity in terms of number of
items, and being able to push new items one by one at the top of it and pop
items one by one out of it.

Clearly, in order to pop an item out of the stack, one must first check
whether the stack is empty or not. For this purpose, the ”stack” class should
contain one extra field that is not included in the base ”linkedList” class. This
integer field, named ”empty”, takes the value 1 if the stack is empty and 0
otherwise.

Thanks to the fact that the fields ”item” and ”next” are declared as pro-
tected (rather than private) in the base ”linkedList” class, they can also be
accessed from the derived ”stack” class. Here is how this derivation is done:

template<class T>
class stack : public linkedList<T>{

int empty;
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public:
stack():empty(1){
} // default constructor

This default constructor uses an initialization list to set the field ”empty” to
1, to indicate that an empty stack is constructed. Furthermore, it invokes im-
plicitly the default constructor of the base ”linkedList” class, which initializes
the field ”next” with the zero value, to indicate that this is a trivial stack that
points to no more items.

Next, we implement another public member function that can be used to
verify whether the stack is empty or not:

int isEmpty() const{
return empty;

} // check whether the stack is empty or not

Next, we implement the member function that pushes an item at the top of
the stack. If the stack is empty, then this is done simply by setting the field
”item” inherited from the base ”linkedList” class to the required value:

void push(const T&t){
if(empty){
item = t;
empty = 0;

}

If, on the other hand, the stack is not empty, then one would naturally like to
use the ”insertFirstItem” function inherited from the base ”linkedList” class.
This function, however, must take a nonconstant argument; this is why a local
nonconstant variable must be defined and passed to it as an argument:

else{
T insert = t;
insertFirstItem(insert);

}
} // push an item at the top of the stack

Next, we implement the member function that pops the top item out of the
stack. Of course, if the stack is empty, then this is impossible, so an error
message must be printed onto the screen:

const T pop(){
if(empty)
printf("error: no item to pop\n");

else

If, on the other hand, the stack is not empty, then there are still two possi-
bilities: if the stack contains more than one item, then one would naturally
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like to use the ”dropFirstItem” function, inherited from the base ”linkedList”
class:

if(next){
const T out = item;
dropFirstItem();
return out;

}

If, on the other hand, the stack contains one item only, then the ”drop-
FirstItem” function inherited from the base ”linkedList” class cannot be used.
Instead, one simply sets the ”empty” field to 1 to indicate that the stack will
soon empty, and returns the ”item” field that contains the only item in the
stack, which has just popped out from it:

else{
empty = 1;
return item;

}
} // pop the top item out of the stack

};

This completes the block of the ”stack” class. Since the entire mathematical
nature of the stack object is expressed fully in the public member functions
”isEmpty”, ”push”, and ”pop” implemented above every user can now use it
in his/her own application, with no worry about its internal data structure.
This is illustrated in the exercises below.

17.13 Exercises

1. Complete the missing arithmetic operators in the implementation of the
dynamic vector in Section 17.1, such as subtraction and multiplication and
division by scalar. The solution is given in Section 28.12 in the appendix.

2. Implement Pascal’s triangle in Chapter 14, Section 14.7, as a list of di-
agonals. The diagonals are implemented as dynamic vectors of increasing
dimension. (The first diagonal is of length 1, the second is of length 2,
and so on.) The components in these vectors are integer numbers. Verify
that the sum of the entries along the nth diagonal is indeed 2n and that
the sum of the entries in the first, second, . . . , nth diagonals is indeed
2n+1 − 1.

3. Define the template class ”triangle<T>” that is derived from a list of
dynamic vectors of increasing dimension, as above. The components in

© 2009 by Taylor and Francis Group, LLC



17.13. EXERCISES 385

these vectors are of the unspecified type ’T’. Implement Pascal’s triangle
as a ”triangle<int>” object. Verify that the sum of the entries in the nth
diagonal is indeed 2n.

4. Apply the ”order()” function in Section 17.11 to a linked list of integer
numbers and order it with respect to absolute value. For example, verify
that the list

(−5, 2,−3, 0, . . .)

is reordered as
(0, 2,−3,−5, . . .).

5. Why is it important for the ”push” function in the ”stack” class to take
a constant (rather than nonconstant) argument?

6. In light of your answer to the above exercise, can the user of the ”stack”
class define a class ’S’ of integer numbers and push the number 5 at the
top of it simply by writing ”S.push(5)”? If yes, would this also be possible
had the ”push” function taken a nonconstant argument?

7. Use the above ”stack” class to define a stack of integer numbers. Push the
numbers 6, 4, and 2 into it (in this order), print it, and pop them back
out one by one from it. Print each number that pops out from the stack,
as well as the remaining items in the stack. The solution can be found in
Section 28.13 in the appendix.

8. Implement the stack in Figure 1.3 above, and use it to add two natural
numbers by Peano’s theory.

9. Implement the stack in Figure 1.4 above, and use it to multiply two natural
numbers by Peano’s theory.
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Implementation of Computational Objects

The vectors and lists implemented above are now used to implement compos-
ite mathematical objects such as graphs, matrices, meshes, and polynomials.
The implementation of these objects uses efficient algorithms in the spirit of
their original mathematical formulation in the first half of this book. This
way, further users of these objects can deal with them as in the original math-
ematical theory, with no need to bother with technical details of storage, etc.
Such a natural implementation is helpful not only to implement advanced
algorithms in elegant and easily-debugged codes but also to understand bet-
ter the nature of the original mathematical concepts, improve the algorithms,
develop more advanced theory, and introduce more advanced mathematical
objects for future use.

The mathematical objects implemented in this part are used here in the
context of graph theory only. Still, they can be used in scientific computing
as well (see [26] and Chapters 26–27 in the next part).
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Chapter 18

Trees

As we have seen above, the tree is a multilevel object, whose definition is based
on mathematical induction. Indeed, assuming that the node at the head of the
tree is given, then the entire tree is constructed by issuing edges (branches)
from the head, and placing a smaller tree (a subtree) at the other end of

each branch. Thanks to the induction hypothesis, one may assume that the
definition of the subtrees is available. As a result, the entire tree is also well
defined.

This mathematical induction is useful also in the recursive implementation
of the tree object on the computer. Indeed, to construct a tree object, it is
sufficient to construct its head and the branches that are issued from it. All
the rest, that is, the construction of the subtrees, can be done recursively in
the same way. This completes the construction of the entire tree object.

This procedure is best implemented in an object-oriented programming
language such as C++. Indeed, the tree object needs to contain only one field
to store the node in the head, and a few other fields to store the pointers to
(or the addresses of) its subtrees, which are tree objects in their own right,
although smaller than the original tree.

The recursive nature of the tree object is also useful in many (member,
friend, and ordinary) functions that are applied to it. This is particularly
useful to solve the tower problem below.

18.1 Binary Trees

The linked list implemented above may be viewed as a unary tree, in which
each node has exactly one son, or one branch that is issued from it, except of
the leaf at the lowest level, which has no sons at all. This is a rather trivial
tree, with one node only at each level. Here we consider the more interesting
case of a binary tree, in which each node has two sons (except of the leaves
at the lowest level, which have no sons), so each level contains twice as many
nodes as the previous level above it.

391
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18.2 Recursive Definition

In C++, the definition of the binary-tree object is particularly straightfor-
ward and elegant. In fact, it has to contain only three fields: one to store the
node at its head, and two other fields to store the pointers to (or the addresses
of) its left and right subtrees.

Here one may ask: since the definition of the binary tree is not yet complete,
how will the subtrees be defined? After all, they are trees in their own right,
so they must be defined by the very definition of the tree object, which is not
yet available?!

The answer is that, in the definition of the tree object, the subtrees are never
defined. Only their addresses are defined, which are just integer numbers ready
to be used as addresses for trees that will be defined later. Therefore, when
the compiler encounters a definition of a binary tree, it assigns room for three
variables in the memory of the computer: one variable to store the head, and
two integer variables to store the addresses of the subtrees, whenever they are
actually created.

Initially, these two addresses are assigned zero or just meaningless random
numbers, to indicate that they point to nothing. Only upon construction of
the concrete subtrees will these addresses take meaningful values and point
to real subtrees.

18.3 Implementation of Binary Tree

The binary-tree object is implemented as a template class, with a yet un-
specified type ’T’, used to denote the type of the nodes in the tree. This
parameter remains unspecified throughout the block of the class, including
the member, friend, and ordinary functions associated with it. It is speci-
fied only by a user who wants to use the definition to construct a concrete
binary-tree object. For example, if the user writes ”binaryTree<int>”, then
the compiler invokes the constructor defined in the block of the ”binaryTree”
template class, with ’T’ interpreted as the integer type. The compiler would
then allocate memory for an integer variable for every variable of type ’T’ in
the definition, or for each node in the tree, resulting in a binary tree of integer
numbers.

Here is the explicit definition of the ”binaryTree” class:

template<class T> class binaryTree{
T head;
binaryTree *left;
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binaryTree *right;

The binary-tree object contains thus three fields: ”head”, a variable of type ’T’
(to be specified later upon construction) to store the value of the node at the
top of the tree, and ”left” and ”right”, variables of type pointer-to-binary-tree,
to store the addresses of the left and right subtrees, if exist (Figure 18.1).

Since these fields are private, we need public member functions to read
them. The first function returns the value of the node at the top of the tree.
Before the function name, the type of the returned value is specified: ”const
T&”. The character ’&’ means that the returned value is only a reference
to the head of the tree. This avoids constructing a copy of the node at the
top of the tree, which might be rather expensive when ’T’ stands for a big
object. Furthermore, thanks to the word ”const” before the function type, the
value at the head can only be read, but not changed, which avoids inadvertent
changes.

public:
const T& operator()() const{
return head;

} // read head

Note that the second ”const” word just before the block of the above function
guarantees that the entire current object, with which the function is called
by the user, also remains unchanged. This protects the object from any in-
advertent change, and saves a lot of worrying from the user. Once the user
constructs a concrete tree ’t’, he/she can simply write ”t()” to invoke the
above operator and read the head of the tree.

Similar functions are defined to read the addresses of the left and right
subtrees. If, however, no subtree exists in the current binary-tree object with
which the functions are called, then they return the zero address, which con-
tains nothing:

const binaryTree* readLeft() const{
return left;

} // read left subtree
const binaryTree* readRight() const{
return right;

} // read right subtree

Next, we define the default constructor of the binary-tree object. This con-
structor takes only one argument of type ”const T&”. This way, when the
constructor is actually called by the user, its argument is passed by reference,
avoiding any need to copy it. Furthermore, the argument is also protected
from any inadvertent change by the word ”const”. If, on the other hand, no
argument is specified by the user, then the constructor gives it the default
value zero, as indicated by the characters ”=0” after the argument’s name.
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FIGURE 18.1: The recursive structure of the binary-tree object.
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This value is assigned to the argument by the constructor of the ’T’ class if
no explicit value is specified.

The three fields in the constructed binary-tree object are initialized in the
initialization list: ”head”, the node at the top of the tree, takes the same
value as the argument, and ”left” and ”right”, the addresses of the subtrees,
are initialized with the zero value, because no subtrees exist as yet.

binaryTree(const T&t=0):head(t),left(0),right(0){
} // default constructor

Furthermore, we also define a copy constructor. This constructor takes as an
argument a constant reference to a binary-tree object. Using a reference avoids
copying the argument: only its address is actually passed to the constructor
function. Furthermore, the word ”const” before the argument’s name protects
it from any inadvertent change.

The three fields in the new tree object are initialized in the initialization
list. The node at the head is initialized with the same value as that of the
head of the copied tree that is passed as an argument. Furthermore, the left
and right subtrees are copied from the left and right subtrees in the argument
tree, using the copy constructor recursively (Figure 18.2).

If, however, any of these subtrees is missing in the argument tree, then
the corresponding field in the constructed tree object takes the value zero, to
indicate that it points to nothing:

binaryTree(const binaryTree&b):head(b.head),
left(b.left?new binaryTree(*b.left):0),
right(b.right?new binaryTree(*b.right):0){

} // copy constructor

18.4 The Destructor

In the destructor of the binary-tree object, the command ”delete” is used to
erase the subtrees and release the memory occupied by them. This is done
implicitly recursively: indeed, to apply the command ”delete” to a pointer or
an address, the compiler first applies the destructor recursively to the content
of the address (Figure 18.3). This erases the subtrees in the ”left” and ”right”
addresses. Then, the compiler releases the memory that had been occupied by
these subtrees for future use. Furthermore, each deleted pointer is assigned the
value zero, to indicate that it points to nothing. Finally, the compiler applies
the destructor of class ’T’ implicitly to erase the field ”head” and release the
memory occupied by it for future use.

~binaryTree(){
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FIGURE 18.2: The copy constructor: first, the head is copied using the copy
constructor of the ’T’ class, whatever it may be. Then, the left and right subtrees

are copied (if exist), using recursive calls to the copy constructor.
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FIGURE 18.3: The destructor: first, the left and right pointers are deleted.
This invokes implicit recursive applications of the destructor to the left and right

subtrees. Finally, the ”head” field is erased by an implicit application of the
destructor of the ’T’ class, whatever it may be.
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delete left;
delete right;
left = right = 0;

} // destructor

18.5 The Tower Constructor

Let us use the binary-tree object to solve the tower problem in Chapter 10,
Section 10.7. This binary tree contains ”move” objects in its nodes, where a
”move” object is an ordered pair of integer numbers. For example, the move
(1, 2) means that the top ring in column 1 is moved to the top of column
2. Thus, the ”move” object can be implemented as a 2-D vector, with two
integer components:

typedef vector<int,2> move;

Once this ”typedef” command is placed before the ”binaryTree” class, the
term ”move” can be used to denote a 2-D vector of integers. The first com-
ponent of this vector stands for the number of the column from which the
top ring is moved, whereas the second component of the vector stands for the
number of the column on top of which the ring is placed.

Let us now complete the block of the ”binaryTree” class. The last function
in this block is yet another constructor, specifically designed to solve the tower
problem. Indeed, it takes two arguments: an integer argument n to indicate
the number of rings in the tower problem, and a move argument to indicate
the original column on which the tower is placed initially and the destination
column to which it should be transferred. If no second argument is specified,
then it is assumed that the tower should be transferred from column 1 to
column 3, as in the original tower problem.

Now, the constructor does the following. First, it finds the number of the
column that is used neither in the first nor in the second component of the
”move” object that is passed to it as the second argument, that is, the column
that is neither the original column on which the tower is placed initially, nor
the destination column to which it should be transferred. The number of
this column is placed in the integer variable named ”empty”, to indicate the
intermediate column, which is only used as a temporary stop to help transfer
the rings. For example, if the second argument in the call to the constructor
is the move (1, 2), then ”empty” is assigned the value 3.

Then, the constructor is called recursively twice to construct the subtrees.
For this, the variable ”empty” is most useful. Indeed, in the left subtree, the
n−1 top rings are transferred to column ”empty”, using a recursive call to the
constructor with the first argument being n−1 and the second argument being
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FIGURE 18.4: The tower constructor: the left subtree contains the moves
required to transfer the top n− 1 rings from the initial column to column

”empty”, the head contains the move required to move the bottom ring from the
initial column to the destination column, and the right subtree contains the moves
required to transfer the above n− 1 rings from column ”empty” to the destination

column.
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the move from the original column to column ”empty”. [In the above example,
the second argument in this recursive call is (1, 3).] Then, the move at the head
is used to move the bottom ring from the initial column to the destination
column. Finally, the right subtree is constructed by another recursive call to
the constructor, this time to transfer the above subtower of n− 1 rings from
column ”empty” to its final destination (Figure 18.4). This is why this second
recursive call uses n−1 as a first argument and the move from column ”empty”
to the destination column as a second argument. [In the above example, the
second argument in this second recursive call is (3, 2).]

binaryTree(int n, const move&m=move(1,3)):
head(m),left(0),right(0){

if(n>1){
int empty=1;
while((empty==head[0])||(empty==head[1]))empty++;
left = new binaryTree(n-1,move(head[0],empty));
right = new binaryTree(n-1,move(empty,head[1]));

}
} // tower constructor

};

[Clearly, when n = 1, no subtrees are needed, since a tower that contains one
ring only can be transferred in one move (the move at the head) to its final
destination.] This recursive constructor produces the tree of moves required
to solve the tower problem, as discussed in Chapter 10, Section 10.8.

To invoke the above tower constructor, the user just needs to write, e.g.,
”binaryTree<move>(4)”. This way, the unspecified type ’T’ in the ”bina-
ryTree” template class is interpreted as the ”move” class. Furthermore, the
above tower constructor is called with the first argument being n = 4 and
the second argument being its default value (1, 3). As a result, this call pro-
duces the four-level tree in Figure 10.8, which contains the moves required to
transfer a tower of four rings.

This completes the block of the ”binaryTree” class. Below we use it to print
the entire list of moves required to solve the tower problem.

18.6 Solving the Tower Problem

The tower constructor defined above uses mathematical induction on n, the
number of rings in the tower, Indeed, it assumes that the left subtree contains
the moves required to transfer the top n − 1 rings from the original column
to column ”empty”, and that the right subtree contains the moves required
to transfer these n− 1 rings from column ”empty” to the destination column.
Using these hypotheses, all that is left to do is to place at the head of the
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tree the move that is passed as the second argument to the constructor, to
move the bottom ring from the original column to the destination column.
In particular, when the second argument takes its default value (1, 3), the
entire tree produced by the tower constructor contains the moves required to
transfer the entire tree from column 1 to column 3, as in Figure 10.8.

This mathematical induction can be used thanks to the recursive structure
of the binary-tree object. Furthermore, this recursive nature enables one to
define many useful functions.

Here we use this recursive nature to print the nodes in the binary tree.
This can be done by mathematical induction on the number of levels in the
tree. Indeed, since the subtrees have fewer levels than the original tree, the
induction hypothesis can be used to assume that their nodes can be printed
by recursive calls to the same function itself. Thus, all that is left to do is to
print the head as well.

Furthermore, mathematical induction can also be used to show that, in a
binary-tree object that has been constructed by the above tower constructor,
the nodes (namely, the moves) are printed in the order in which they should be
carried out to solve the tower problem (Figure 18.5). Indeed, by the induction
hypothesis, it can be assumed that the first recursive call indeed prints the
moves in the left subtree in the order in which they should be carried out
to transfer the top n− 1 rings from the original column to column ”empty”.
Then, the function prints the move required to move the bottom ring from
the original column to the destination column. Finally, again by the induction
hypothesis, the second recursive call prints the moves required to move the
above n−1 rings from column ”empty” to the destination column. This indeed
guarantees that the list of moves is indeed printed in the proper order in which
they should be carried out.

The implementation of the function that prints the nodes in the binary-tree
object in the above order is, thus, as follows:

template<class T>
void print(const binaryTree<T>&b){
if(b.readLeft())print(*b.readLeft());
print(b());
if(b.readRight())print(*b.readRight());

} // print binary tree

Here is how the user can use this function to print the list of moves required
to transfer a tower of 16 rings from column 1 to column 3:

int main(){
binaryTree<move> tower(16);
print(tower);
return 0;

}
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FIGURE 18.5: Printing the tree constructed by the tower constructor: first,
the function is applied recursively to the left subtree to print the moves required to
transfer the top n− 1 rings from the initial column to column ”empty”. (By the
induction hypothesis, this is done in the correct order.) Then, the move in the

head is printed to move the bottom ring from the initial column to the destination
column. Finally, the moves in the right subtree are printed in the correct order
required to transfer the n− 1 rings from column ”empty” to the destination

column.
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18.7 General Trees

So far, we have considered binary trees, in which each node has exactly two
sons or two branches that are issued from it, except of the leaves at the lowest
level, from which no branches are issued. This structure allows one to use the
recursive implementation in Figure 18.1 above.

General trees, on the other hand, may have any number of branches issued
from any node. Therefore, the tree object must have a linked list of tree objects
to stand for its sons or subtrees. More precisely, the tree object should have a
pointer to (or the address of) the linked list containing its sons. Thanks to the
fact that a linked list may contain any number of items, the head of the tree
may have any number of branches issued from it to its subtrees. Furthermore,
a tree may also have no sons at all, in which case its list of sons is empty, so
the pointer that points to it takes the value zero.

Here is how the tree object should be implemented in the ”tree” template
class:

template<class T> class tree{
protected:
T item;
linkedList<tree<T> >* branch;

public:

...

};

The details are left to the reader.
Below we also discuss the implementation of general graphs, which lack

the recursive nature of a tree. In a general graph, the notion of “son” is
irrelevant: a node may well be both the son and the parent of another node.
This is why a graph cannot be implemented like a tree. Indeed, if a graph had
been implemented using the above ”tree” class, then the linked list in it may
well contain nodes that have already been defined previously and don’t have
to be defined again but rather to be referred to. To avoid infinite recursion,
the linked list in the graph object mustn’t contain new graphs, but merely
references to existing graphs or, better yet, references to the nodes that are
connected to the current node in the graph. This implementation is discussed
below.
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18.8 Exercises

1. Use the above binary-tree object to store and compute arbitrarily long
arithmetic expressions.

2. Implement the required arithmetic operations between such binary-tree
objects. For example, add two binary trees by using them as subtrees in
a new tree, with ’+’ in its head.

3. Write a function that prints the arithmetic expression properly (with
parentheses if necessary).

4. Write a recursive function that computes the value of the arithmetic ex-
pression stored in the binary tree.

5. Use the binary-tree object also to store and compute arbitrarily long
Boolean expressions.

6. Implement the required logic operations between such binary-tree objects.
For example, define the conjunction of two binary trees by using them as
subtrees in a new binary tree, with ’∧’ in its head.

7. Write a function that prints the Boolean expression properly (with paren-
theses if necessary).

8. Write a recursive function that computes the true value (0 or 1) of the
Boolean expression stored in the binary tree.

9. Introduce a static integer variable in the above tower constructor to count
the total number of moves used throughout the construction. Verify that
the number of moves is indeed 2n − 1, where n is the number of levels in
the binary tree.

10. Explain the implicit recursion used in the destructor in the ”binaryTree”
class. How does it release the entire memory occupied by a binary-tree
object?
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Graphs

The implementation of the tree object above is inherently recursive. The bi-
nary tree, for example, is defined in terms of its left and right subtrees, which
are trees in their own right.

General graphs, on the other hand, have no recursive structure that can be
used in their implementation. Therefore, a graph must be implemented as a
mere set of nodes and a set of edges issued from or directed to each node.

The lack of any recursive nature makes the graph particularly difficult to
implement on the computer. Indeed, as discussed at the end of the previous
chapter, its naive (direct) implementation would require to attach to each
node a linked list of references to the nodes that are connected to it by an
edge. To avoid this extra complication, it makes much more sense to use the
algebraic formulation of the graph as discussed below.

19.1 The Matrix Formulation

To have a transparent and useful implementation, the graph could be for-
mulated as a matrix. In this form, the edges issued from node j are represented
by the nonzero elements in the jth column in the matrix. With this formu-
lation, the coloring algorithms take a particularly straightforward and easily
implemented form.

In Chapter 10, Sections 11.10–11.11, we have seen that a weighted graph is
associated with the square matrix of order |N |:

A ≡ (ai,j)1≤i,j≤|N |,

where N is the set of nodes in the graph, |N | is its cardinality (the total
number of nodes), and the nodes in N are numbered by the natural numbers

1, 2, 3, . . . , |N |.

The element ai,j in the matrix A is the weight assigned to the edge leading
from node j to node i.

An unweighted graph can easily be made weighted by assigning the uniform
weight 1 to each edge in it. The matrix A associated with it takes then the

405
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form

ai,j ≡ {
{

1 if (j, i) ∈ E
0 if (j, i) 6∈ E,

where E is the set of the edges in the graph. In this formulation, the coloring
algorithms in Chapter 10, Sections 11.4 and 11.6, above take a particularly
straightforward form.

19.2 The Node-Coloring Algorithm

In the above matrix formulation, the node-coloring algorithm takes a par-
ticularly transparent form [25]: for j = 1, 2, 3, . . . , |N |, define

c(j) ≡ min(N \ {c(i) | i < j, ai,j 6= 0} \ {c(i) | i < j, aj,i 6= 0}.

This way, the color c(j) assigned to node j is different from any color assigned
previously to any node i that is connected to it by an edge of either the form
(j, i) or the form (i, j).

Later on, we’ll see how this algorithm can be easily implemented on a
computer.

19.3 The Edge-Coloring Algorithm

Let us use the above matrix formulation also to have a straightforward rep-
resentation of the edge-coloring algorithm. For this, we first need the following
definitions.

For 1 ≤ n ≤ |N |, let An denote the n×n submatrix in the upper-left corner
of A:

(An)i,j ≡ ai,j , 1 ≤ i, j ≤ n.

Furthermore, let
ci,j ≡ c(ai,j)

be the color assigned to the element ai,j in A, or to the edge (j, i) in E.
Moreover, let ci(An) be the set of colors assigned to the elements in the ith
row in the matrix An:

ci(An) ≡ {ci,j | 1 ≤ j ≤ n}.

Finally, recall that
At

n ≡ (at
i,j)1≤i,j≤n
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is the transpose of An, defined by

at
i,j ≡ aj,i.

A =

unavailable colors

an,j

FIGURE 19.1: Step 1 in the edge-coloring algorithm, in which edges of the
form an,j (for j = 1, 2, 3, . . . , n) are colored in a color that has not been used

previously in the area marked “unavailable colors.”

The edge-coloring algorithm can now be formulated as follows. For n =
1, 2, 3, . . . , |N |, do the following:

1. For j = 1, 2, 3, . . . , n, define

cn,j ≡ min(N \ {cn,k | k < j} \ cj(An−1) \ cj(At
n−1)).

This way, the elements in the nth row of An are colored properly; indeed,
cn,j , the color used to color the edge leading from j to n, has never been
used before to color any edge issued from or directed to either j or n (see
Figure 19.1).

2. For j = 1, 2, 3, . . . , n− 1, define

cj,n ≡ min(N \ cn(An) \ {ck,n | k < j} \ cj(An−1) \ cj(At
n−1)).

This way, the elements in the nth column of An are colored properly as
well (see Figure 19.2).
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A =

unavailable colors

unavailable colors

aj,n

FIGURE 19.2: Step 2 in the edge-coloring algorithm, in which edges of the
form aj,n (for j = 1, 2, 3, . . . , n− 1) are colored in a color that has not been used

previously in the area marked “unavailable colors.”

The above definition indicates that the transpose matrix At should be stored
as well as A. Indeed, the transpose submatrix At

n−1 is often used throughout
the above algorithm. Below we discuss the efficient implementation of A, At,
and the above algorithms.

19.4 Sparse Matrix

In most graphs, each node has only a few nodes to which it is connected.
In other words, most of the elements ai,j in A vanish. This means that A is
sparse.

Thus, it makes no sense to store all the elements in A, including the zero
ones. Indeed, this would require prohibitively large time and storage resources,
to complete the above coloring algorithms. Indeed, these algorithms would
then have to check in each step what colors have been used previously to
color not only real edges (j, i) ∈ E, for which ai,j 6= 0, but also nonexisting
dummy edges (j, i) 6∈ E, for which ai,j = 0. This redundant work would make
the algorithms prohibitively expensive.

A much better implementation uses selective storage: to store only the
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nonzero elements in A, which correspond to real edges in E. This approach not
only saves valuable storage, but also reduces significantly the time required to
complete the above coloring algorithms: indeed, in each step, one only needs
to scan existing edges in E (or nonzero elements in A) and check what colors
have been used in them.

A sparse matrix can be implemented efficiently by storing only its nonzero
elements. Indeed, it can be stored in a list of |N | items, each of which corre-
sponds to a node in N , or a row in A. Because the number of nonzero elements
in each row in A is unknown in advance, the ith item in the list should store
the ith row in A as a linked list of nonzero elements of the form ai,j . This
way, there is no a priori limit on the number of nonzero elements stored in
each row, and the storage requirement is kept to a minimum.

Here one could ask: why not store the sparse matrix in a mere |N |-
dimensional vector, whose components are the rows in A? The answer is that,
since the rows are implemented as linked lists of variable length, they have
different sizes, thus cannot be kept in an array. Only their addresses, which
are actually mere integers, can be kept in an array; this means that the rows
themselves must be stored in a list rather than a vector.

19.5 Data Access

Let us first consider a naive implementation of a graph in terms of its set
of nodes N and its set of edges E. Later on, we’ll see how this implementa-
tion improves considerably when formulated in terms of the sparse matrix A
associated with the graph, rather than in terms of the original graph.

In order to apply the coloring algorithms, each node in N must “know”
to what nodes it is connected. By “know” we mean here “have access to”
or “know the address of” or “have a reference to.” In other words, the node
object that represents a node j ∈ N must contain at least two linked lists
of addresses or references: one list to know from which nodes an edge leads
to it (the nonzero elements in the jth row in A), and another list to know
the nodes to which edges are issued from it (the nonzero elements in the jth
column in A). Furthermore, the node object must also contain an integer field
to store the index of the color assigned to it.

The references-to-nodes in the above linked lists actually stand for edges in
E, or nonzero elements in A. Because these edges should be also colored in
the edge-coloring algorithm, they should actually be replaced by objects with
two fields: one to contain the required reference-to-node, and another one to
contain the index of the color in which the corresponding edge is colored. This
is the edge object.

The edge object that represents an edge of the form (j, i) ∈ E (or an element
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ai,j 6= 0) is duplicated in the above implementation. Indeed, it appears not
only in the first linked list in the node object i to stand for an edge leading
to it, but also in the second linked list of the node object j to stand for an
edge issued from it. In order to prevent a conflict between the colors assigned
to these two edge objects, they must be one and the same object. Therefore,
one of the linked lists in the node object, say the second one, must be not a
list of concrete edges but rather a list of references-to-edges.

In the above implementation, the edge object that stands for the edge (j, i)
contains information about the node j from which it is issued, but not about
the node i to which it leads. This approach has been considered because we
have assumed that this information is already known to the user, because the
entire linked list of edges is stored in the ith item in the list of nodes. However,
this assumption is not always valid; indeed, we have just seen that a reference
to this edge is placed also in the jth item in the list of nodes, to let node j
know that it is connected to node i. Unfortunately, this information is denied
from node j, since there is no field to store the number i in the edge object.

In order to fix this, the implementation of the edge object must be yet
more complicated. In fact, it must contain three fields: the first field, of type
reference-to-node, to store a reference to the node j from which it is issued;
the second one, of type reference-to-node too, to store a reference to the node
i to which it leads; and, finally, an integer field to store its color.

Below we see how this implementation simplifies considerably when trans-
lated to matrix language.

19.6 Virtual Addresses
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54FIGURE 19.3: A node indexing in an oriented graph. The six nodes are
numbered 1, 2, 3, 4, 5, 6.

In the matrix formulation, each node in N is assigned a number between 1
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and |N | to serve as its index. This indexing scheme induces an order on the
nodes in N : they are now ordered one by one from the first node, indexed by
1, to the last node, indexed by |N |.

For example, the nodes in the graph in Figure 19.3 are ordered counter-
clockwise, and indexed by the numbers 1, 2, 3, 4, 5, 6. With this indexing, the
6× 6 matrix A associated with the graph takes the form

A =


0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 1
0 0 0 0 1 0
0 0 0 0 0 0
0 0 0 0 1 0

 .

The indexing scheme is particularly useful to store the colors assigned to
the nodes in the node-coloring algorithm. Indeed, these colors can now be
stored in an |N |-dimensional vector v, whose ith component vi stores the
color assigned to node i:

vi = c(i).

The index assigned to the node can be thought of as its virtual address,
through which it can be referred. Unlike the physical address in the memory of
the computer, the virtual address is not only straightforward and continuous,
but also reflects well the mathematical properties of the node. Indeed, its
index i can be used to refer directly to the ith row in A, which stores all the
edges (j, i) leading to it (or the nonzero elements ai,j 6= 0). The node j from
which such an edge is issued is stored in an integer field in the edge object, in
which the index j (the column of A in which ai,j is placed) is stored.

Thus, in the matrix formulation, an edge (or a nonzero element ai,j 6= 0)
is an object that contains two integer fields only: one to store the column j,
and another one to store the color assigned to the edge in the edge-coloring
algorithm. The row number i doesn’t have to be stored in this object, because
the entire linked list of these objects (or the entire ith row in A) is placed in
the ith item in the list of rows that form the entire sparse matrix A, so it is
already known to the user.

In summary, the sparse matrix A is implemented as a list of |N | row objects
(see Figure 19.4). The ith item in the list contains the ith row in A, which is
actually a linked list of row-element objects. Each row-element object contains
two integer fields: one to store the column number j (the virtual address of
the node j), and another one to store the color ci,j assigned to ai,j in the
edge-coloring algorithm.

Still, both coloring algorithms require scanning not only the rows in A but
also the columns in it. For this purpose, one must store not only the original
matrix A but also its transpose At. Indeed, scanning the jth linked list in the
implementation of At amounts to scanning the jth column in A as required.
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FIGURE 19.4: A 5× 5 sparse matrix, implemented as a list of five row
objects. Each row object is a linked list of row-element objects. Each row-element
object contains an integer field to indicate the column in which it is placed in the

matrix.

The rows in At (or the columns in A) correspond to the second linked list
in the above (naive) implementation of a node in the original graph, which
stores the edges that are issued from it. As discussed above, these edges have
already been implemented, so the second linked list mustn’t contain new edge
objects but rather references to existing edges. This should prevent conflicts
in coloring the edges later.

Similarly, in the present implementation of the graph in terms of the sparse
matrix A, the transpose matrix At should be implemented not as a list of
linked lists of concrete edges but rather as a list of linked lists of references-
to-edges. This way, an element at

j,i in At is implemented not as a new row-
element object but rather as a reference to the existing row-element object
ai,j . This way, the color ci,j assigned to ai,j automatically serves also as the
color assigned to at

j,i, as required.
Unfortunately, since the row-element ai,j is now referred to not only from

the ith row in A but also from the jth row in At, it must contain an extra
integer field to store the integer number i. This somewhat complicates the
implementation of the row-element object.

To avoid the above extra integer field in the implementation of the row-
element object , one may stick to the original implementation of At as a list
of row objects. In this approach, however, one must make sure that any change
to ai,j influences at

j,i as well. In particular, once a color ci,j is assigned to ai,j
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in the edge-coloring algorithm, it must be assigned immediately to at
j,i as well,

to avoid a conflict between these two duplicate representations of the same
edge. This is indeed the approach used later in the book.

19.7 Advantages and Disadvantages

The indices (or virtual addresses) i = 1, 2, 3, . . . , |N | assigned to the nodes
in N are continuous in the sense that they proceed continuously from 1 to |N |,
skipping no number in between. This way, the colors assigned to the nodes
can be stored in an |N |-dimensional vector v, whose components vi store the
color assigned to the node i:

vi = c(i).

Thus, the continuous index i = 1, 2, 3, . . . , |N | is used to refer to the ith
node in N , and assign to it the color stored in the ith component in v. This
helps to avoid an extra integer field in each node object to store its color.

The node object should thus contain only the information about the edges
that lead to it. The explicit implementation of the node object can thus be
avoided: in fact, the ith node in N is implemented implicitly as the row object
that stores the ith row in A. Indeed, this row contains the elements ai,j that
represent the edges that lead to node i, as required.

Furthermore, the above indexing scheme is also useful to refer to all the
nodes from which an edge leads to node i. Indeed, these nodes are referred to
by their index j, or the column in A in which the corresponding element ai,j is
placed. These row elements are placed in the linked list that forms the ith row
in A. These row objects are now placed in a list indexed i = 1, 2, 3, . . . , |N | to
form the entire sparse matrix A associated with the graph.

The row-element objects used to implement the ai,j ’s should preserve in-
creasing column order. Indeed, if j < k, then ai,j should appear before ai,k in
the linked list that implements the row object that stores the ith row in A.

The drawback in this structure is that it is somewhat stiff: it would be
rather difficult to add an extra node to an existing graph, because this may
require changing the entire indexing scheme. Indeed, the list of row objects
that are used to store the rows in A is fixed and contains |N | items only.
There is no guarantee that sufficient room in the memory of the computer is
available to enlarge this list to contain more than |N | items. Therefore, even
adding one new node at the end of the list of nodes is not always possible,
unless the list of row objects to implement A is replaced by a linked list of
row objects.

To avoid this extra complication, we assume here that the graph under
consideration is complete, and no extra node is expected to be added to it.
Only at this final point are the indices i = 1, 2, 3, . . . , |N | assigned to the
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nodes in the graph. Under this assumption, one can safely use a list of |N |
row objects to form the entire |N | × |N | sparse matrix A associated with the
graph.

19.8 Nonoriented Graphs
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FIGURE 19.5: Node indexing in an nonoriented graph. The six nodes are
numbered 1, 2, 3, 4, 5, 6.

So far, we have discussed oriented graphs, in which an edge is an ordered
pair of the form (i, j), where i and j are some (indices of) nodes. In nonoriented
graphs, on the other hand, an edge {i, j} is an unordered pair, or a set of two
nodes, in which both nodes i and j take an equal status: no one is prior to
the other. In terms of the matrix formulation, ai,j 6= 0 if and only if aj,i 6= 0.
In other words, A is symmetric:

At = A.

For example, the symmetric 6×6 matrix A associated with the nonoriented
graph in Figure 19.5 takes the form
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A =


0 1 0 0 0 0
1 0 1 0 0 0
0 1 0 1 0 1
0 0 1 0 1 0
0 0 0 1 0 1
0 0 1 0 1 0

 .

Thanks to the symmetry of A, the node-coloring algorithm in the nonori-
ented graph takes the simpler form: for j = 1, 2, 3, . . . , |N |, define

c(j) ≡ min(N \ {c(i) | i < j, aj,i 6= 0}.

In terms of matrix elements, one should bear in mind that the only relevant
elements in A are those that lie in its lower triangular part, that is, the nonzero
elements ai,j for which i ≥ j. Indeed, for i ≥ j, the element aj,i refers to the
same edge as ai,j , so there is no need to consider it as an independent matrix
element. Instead, it may be considered as a mere reference to ai,j .

A =

unavailable colors

an,j

FIGURE 19.6: Step 1 in the edge-coloring algorithm for a nonoriented graph,
in which edges of the form an,j (for j = 1, 2, 3, . . . , n) are colored in a color that

has not been used previously in the area marked “unavailable colors.”

Thus, for nonoriented graphs, the edge-coloring algorithm takes a far sim-
pler form than in Section 19.3 above: For n = 1, 2, 3, . . . , |N |, do the following:

1. For j = 1, 2, 3, . . . , n, define
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cn,j ≡ min(N \ {cn,k | k < j} \ cj(An−1)

(see Figure 19.6).
2. For j = 1, 2, 3, . . . , n− 1, define

cj,n ≡ cn,j .

In order to implement this algorithm, there is no longer a need to store the
transpose matrix At. Still, as can be seen from the final step in the above
edge-coloring algorithm, one should be careful to update the color assigned
to an element of the form ai,j (i ≥ j) not only in the row-element object
that stores ai,j but also in the row-element object that stores aj,i, to avoid
a conflict between these two objects, which actually refer to the same edge
{i, j}.

In the next chapter, we give the full code to implement the sparse-matrix
object and the coloring algorithms.

19.9 Exercises

1. Implement the node-coloring algorithm for an oriented graph in its matrix
formulation, using the ”matrix” template class in Chapter 16, Section
16.16.

2. Introduce an integer variable ”count” to count the number of checks re-
quired in the entire coloring algorithm. Test your code for several graphs,
and observe how large ”count” is in each application.

3. Implement the edge-coloring algorithm for an oriented graph in its matrix
formulation, using the ”matrix” template class in Chapter 16, Section
16.16.

4. Introduce an integer variable ”count” to count the number of checks re-
quired in the entire coloring algorithm. Test your code for several graphs,
and observe how large ”count” is in each application.

5. Implement the node-coloring algorithm for a nonoriented graph in its ma-
trix formulation, using the ”matrix” template class in Chapter 16, Section
16.16.

6. Introduce an integer variable ”count” to count the number of checks re-
quired in the entire coloring algorithm. Test your code for several graphs,
and observe how large ”count” is in each application.

7. Implement the edge-coloring algorithm for a nonoriented graph in its ma-
trix formulation, using the ”matrix” template class in Chapter 16, Section
16.16.

8. Introduce an integer variable ”count” to count the number of checks re-
quired in the entire coloring algorithm. Test your code for several graphs,
and observe how large ”count” is in each application.
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9. What are the advantages of using sparse matrices rather than the ”matrix”
object above?

10. By how much would ”count” decrease if sparse matrices had been used in
the above applications?

11. For oriented graphs, why is it necessary to store also the transpose of the
sparse matrix to carry out the coloring algorithms?

12. Write the alternative coloring algorithms in the last exercises at the end
of Chapter 11 in terms of the matrix formulation.
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Chapter 20

Sparse Matrices

Here we introduce a multilevel hierarchy of mathematical objects: from the
most elementary object, the matrix-element object in the lowest level, through
the more complicated object, the row object implemented as a linked list of
matrix elements, to the matrix object in the highest level of the hierarchy,
implemented as a list of row objects. This is a good example for how object-
oriented programming can be used to form more and more complicated math-
ematical objects.

The sparse-matrix object implemented in the highest level of the above
hierarchy is particularly flexible in the sense that arbitrarily many matrix
elements can be used in each row in it. Furthermore, it is particularly easy
to add new matrix elements and drop unnecessary ones, without any need to
waste storage requirements on dummy elements.

As discussed in Chapter 19 above, the sparse-matrix object is most suit-
able to implement both oriented and nonoriented graphs. Furthermore, the
node-coloring and edge-coloring algorithms are implemented in an elegant and
transparent code, along the guidelines in Chapter 19 above.

20.1 The Matrix-Element Object

The most elementary object in the hierarchy, the matrix element, is imple-
mented in the ”rowElement” class below, which contains two data fields: the
first (of type ’T’, to be specified upon construction later on in compilation
time) to store the value of the element, and the second (of type ”int”) to store
the index of the column in which the element is placed in the matrix. These
fields are declared as ”protected” (rather than the default ”private” status)
to make them accessible not only from definitions of members and friends of
the class but also from definitions of members and friends of any class that is
derived from it.

template<class T> class rowElement{
protected:
T value;
int column;

419
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The following constructor uses an initialization list to initialize these fields
with proper values immediately upon construction, in the same order in which
they are listed in the class block:

public:
rowElement(const T& val=0, int col=-1)

: value(val),column(col){
} // constructor

With this constructor, the user can write ”rowElement<double> e” to con-
struct a new matrix element ’e’ with the default value 0 and the meaningless
default column index −1.

The copy constructor is defined in a similar way:

rowElement(const rowElement&e)
: value(e.value),column(e.column){

} // copy constructor

With this copy constructor, the user can write ”rowElement<double> d(e)”
or ”rowElement<double> d=e” to construct yet another matrix element ’d’
with the same data fields as ’e’.

Unlike the constructor, which construct a new matrix element, the following
assignment operator assigns the value of an existing matrix element to an
existing (the current) matrix element. This is why no initialization list can
be used: the data fields must be assigned their proper values in the function
block:

const rowElement& operator=(const rowElement&e){

As is indicated by the words ”const rowElement&” in these round parentheses,
the argument is passed by (constant) reference, to avoid invoking the copy
constructor. Now, if the argument is indeed not the same object as the current
object, then the data fields are assigned one by one:

if(this != &e){
value = e.value;
column = e.column;

}

Finally, as indicated by the words ”const rowElement&” in the beginning of
the above header, the current object is also returned by (constant) reference:

return *this;
} // assignment operator

This way, the user can write commands like ”c = d= e” to assign the value
of the matrix element ’e’ to both matrix elements ’d’ and ’c’.

The destructor below has an empty block. Indeed, because there are no
pointer fields in the class, no ”delete” commands are needed; the data fields
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are destroyed implicitly at the ’}’ symbol that marks the end of the function
block, in an order reversed to the order in which they are listed in the class.

~rowElement(){
} // destructor

As discussed above, the data fields are declared as protected rather than
private. This way, they can be also accessed from classes derived from the
”rowElement” class later on in the book. Furthermore, they can be read (al-
though not changed) even from ordinary functions by the public ”getValue”
and ”getIndex” member functions:

const T& getValue() const{
return value;

} // read the value

Here, thanks to the words ”const T&” at the beginning of its header, the func-
tion returns the value of the current matrix element by (constant) reference.
Furthermore, the reserved word ”const” before the function block guarantees
that the current object never changes in the function. The user can thus safely
write ”e.getValue()” to read the value of the matrix element ’e’.

Similarly, the column index is read as follows:

int getColumn() const{
return column;

} // return the column

Here the output is returned by value (rather than by address or by reference)
because it is only an integer, so copying it is no more expensive than copying
its address.

20.2 Member Arithmetic Operators

Next, we define some member arithmetic operations. In particular, the
”+=” operator below allows one to form a linked list of matrix elements
later on in this chapter and apply to it the merging and ordering functions in
Chapter 17, Section 17.10–17.11.

The ”+=” operator has two versions. The first version adds the ’T’ argu-
ment to the value of the current ”rowElement” object:

const rowElement&
operator+=(const T&t){
value += t;
return *this;

} // adding a T
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With this version, the user can write ”d = e += 1.” to increment the value of
the matrix element ’e’ by 1 and assign the up-to-date ’e’ in the matrix element
’d’ as well.

The following version, on the other hand, takes a ”rowElement” (rather
than a ’T’) argument:

const rowElement&
operator+=(const rowElement<T>&e){
value += e.value;
return *this;

} // adding a rowElement

With this version, the user can write ”c = d+= e” to increment the value of
’d’ by the value of ’e’ and assign the updated matrix element ’d’ in ’c’ as well.

Similarly, the ”-=” operator also has two versions:

const rowElement& operator-=(const T&t){
value -= t;
return *this;

} // subtracting a T

const rowElement&
operator-=(const rowElement<T>&e){
value -= e.value;
return *this;

} // subtracting a rowElement

The following operator multiplies the value of the current matrix element by
the argument:

const rowElement&
operator*=(const T&t){
value *= t;
return *this;

} // multiplying by a T

Similarly, the following operator divides the value of the current matrix ele-
ment by the (nonzero) argument:

const rowElement& operator/=(const T&t){
value /= t;
return *this;

} // dividing by a T
};

This completes the block of the ”rowElement” class.
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20.3 Comparison in Terms of Column Index

Next, we define the binary ’<’, ’>’, and ”==” ordinary (nonmember, non-
friend) operators to compare two matrix elements in terms of their column
indices. For example, with these operators, ”e < f” returns 1 if the column
index of ’e’ is indeed smaller than that of ’f’, and 0 otherwise. These operators
allow one to form linked lists of matrix elements later on in this chapter and
order and merge them (while preserving increasing column-index order) as in
Chapter 17, Section 17.10–17.11,

template<class T>
int
operator<(const rowElement<T>&e, const rowElement<T>&f){
return e.getColumn() < f.getColumn();

} // smaller column index

Similarly, the ’>’ operator is defined by

template<class T>
int
operator>(const rowElement<T>&e, const rowElement<T>&f){
return e.getColumn() > f.getColumn();

} // greater column index

With this operator, ”e > f” is 1 if the column index of ’e’ is indeed greater
than that of ’f’, and 0 otherwise.

Similarly, the ”==” operator is defined by

template<class T>
int
operator==(const rowElement<T>&e, const rowElement<T>&f){
return e.getColumn() == f.getColumn();

} // same column

With this operator, ”e == f” is 1 if both ’e’ and ’f’ have the same column
index, and 0 otherwise.

20.4 Ordinary Arithmetic Operators

Here we define some ordinary binary arithmetic operators with a ”rowEle-
ment” object and a ’T’ object:
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template<class T>
const rowElement<T>
operator+(const rowElement<T>&e, const T&t){
return rowElement<T>(e) += t;

} // rowElement plus a T

Note that the arguments are passed to the operator by (constant) reference,
to avoid unnecessary calls to the copy constructors of the ”rowElement” and
’T’ classes. Because the required sum is placed in a (temporary) local ”row-
Element” variable that disappears at the end of the function, it cannot be
returned by reference; it must be returned by value, as is indeed indicated
by the word ”rowElement<T>” (rather than ”rowElement<T>&”) in the
header, just before the function name. This way, just before it disappears, it
is copied by the copy constructor of the ”rowElement” class into the tempo-
rary object returned by the function.

With this operator, ”e + t” returns a matrix element whose column index
is as in ’e’ and whose value is the sum of the value in ’e’ and the scalar ’t’.

The following version of the ’+’ operator takes the arguments in the reversed
order:

template<class T>
const rowElement<T>
operator+(const T&t, const rowElement<T>&e){
return rowElement<T>(e) += t;

} // T plus rowElement

With this operator, ”t + e” is the same as ”e + t” above.
The following operator returns the ”rowElement” object whose column in-

dex is as in the first argument, and its value is the difference between the
value in the first argument and the second argument:

template<class T>
const rowElement<T>
operator-(const rowElement<T>&e, const T&t){
return rowElement<T>(e) -= t;

} // rowElement minus T

With this operator, ”e - t” returns the matrix element whose column index
is as in ’e’ and whose value is the difference between the value in ’e’ and the
scalar ’t’.

Similarly, the following ’*’ operator calculates the product of a ”rowEle-
ment” object and a ’T’ object:

template<class T>
const rowElement<T>
operator*(const rowElement<T>&e, const T&t){
return rowElement<T>(e) *= t;

} // rowElement times a T
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The following version of the ’*’ operator is the same as the original version,
except that it takes the arguments in the reversed order:

template<class T>
const rowElement<T>
operator*(const T&t, const rowElement<T>&e){
return rowElement<T>(e) *= t;

} // T times rowElement

With these versions, both ”e * t” and ”t * e” return the ”rowElement” object
whose column index is as in ’e’ and whose value is the product of the value in
’e’ and the scalar ’t’.

Similarly, the next operator calculates the ratio between a matrix element
and a scalar:

template<class T>
const rowElement<T>
operator/(const rowElement<T>&e, const T&t){
return rowElement<T>(e) /= t;

} // rowElement divided by a T

Indeed, with this operator, ”e / t” returns the ”rowElement” object whose
column index is as in ’e’ and whose value is the ratio between the value in ’e’
and the scalar ’t’.

Finally, the following ordinary function prints the data fields in a ”rowEle-
ment” object onto the screen:

template<class T>
void print(const rowElement<T>&e){
print(e.getValue());
printf("column=%d\n",e.getColumn());

} // print a rowElement object

20.5 The Row Object

We are now ready to implement a row in a sparse matrix as a linked list
of matrix elements. More precisely, the ”row” class below is derived from the
”linkedList” class in Chapter 17, Section 17.3, with its template ’T’ specified
to be the ”rowElement” class (Figure 20.1).

The ”row” class is a template class as well: it uses the symbol ’T’ to stand
for the type of the value of the matrix element. This type is specified only
upon constructing a concrete ”row” object later on in compilation time.

Since we focus here on a single row in a sparse matrix, we refer in the
sequel to its elements as row elements (or just elements) rather than matrix
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-base class

linked list of row elements

derived class

row

FIGURE 20.1: Inheritance from the base class ”linkedList<rowElement>” to
the derived class ”row”.

elements. Furthermore, it is assumed hereafter that the elements in the ”row”
object are ordered in increasing column order. To guarantee this, the user is
well advised to be careful to construct concrete ”row” objects according to
this order.

template<class T>
class row : public linkedList<rowElement<T> >{
public:

row(const T&val=0,int col=-1){
item = rowElement<T>(val,col);

} // constructor

This constructor takes two arguments, a ’T’ argument and an integer argu-
ment, and uses them to call the constructor of the ”rowElement” class to
form the first element in the row. Thanks to the fact that the ”item” field in
the base ”linkedList” class is declared as protected (rather than private) in
Chapter 17, Section 17.3, it can be accessed from the derived ”row” class to
set the first element in the row.

Fortunately, the copy constructor, assignment operator, and destructor are
inherited properly from the base ”linkedList” class, so they don’t have to be
rewritten here.

20.6 Reading the First Element

The following public member function can only read (but not change) the
first element in the current ”row” object:

const rowElement<T>& operator()() const{
return item;

} // read first element
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With this function, the user can write ”r()” to read the first element in the
row ’r’.

Furthermore, the next member function reads the value of the first element
in the current ”row” object:

const T& getValue() const{
return item.getValue();

} // read value of first element

Moreover, the next function reads the column index of the first element in the
current ”row” object:

int getColumn() const{
return item.getColumn();

} // read column-index of first element

20.7 Inserting a New Element

As discussed above, since the ”row” class is derived from the ”linkedList”
class, it can use its public and protected members. In particular, it can use the
functions that insert or drop items. Still, the ”row” class has its own versions
of the ”insertNextItem”, ”insertFirstItem”, and ”append” functions. These
versions are different from the original versions in Chapter 17 only in that they
take two arguments to specify the value and the column index of the inserted
element. In fact, the definitions of each new version calls the corresponding
original version, using the prefix ”linkedList::” before the function name to
indicate that the original version in the base ”linkedList” class is called:

void insertNextItem(const T&val, int col){
rowElement<T> e(val,col);

First, the arguments ”val” and ”col” are used to invoke the row-element con-
structor to construct the new row element ’e’. This row element is then in-
serted as a second element in the current ”row” object by using the ”::” oper-
ator to invoke the original ”insertNextItem” function of the base ”linkedList”
class:

linkedList<rowElement<T> >::insertNextItem(e);
} // insert a rowElement as second item

The same approach is used to insert a new row element at the beginning of
the current ”row” object:
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void insertFirstItem(const T&val, int col){
rowElement<T> e(val,col);
linkedList<rowElement<T> >::insertFirstItem(e);

} // insert a rowElement at the beginning

This approach is used to append a new row element at the end of the current
”row” object:

void append(const T&val, int col){
rowElement<T> e(val,col);
linkedList<rowElement<T> >::append(e);

} // append a rowElement at the end of row

20.8 Recursive Functions

The recursive structure of the base ”linkedList” class is particularly useful
in the definitions of the member functions below, which are applied recursively
to the ”next” field that points to the tail of the row (the row elements that
follow the first row element). However, the ”next” field inherited from the
base ”linkedList” class is of type pointer-to-linkedList rather than pointer-
to-row. Therefore, it must be converted explicitly to pointer-to-row before the
recursive call can take place. This is done by inserting the prefix ”(row*)”
before it.

Usually, this conversion is considered risky because in theory ”next” could
point to a ”linkedList” object or to any object derived from it, with a com-
pletely different version of the recursively called function. Fortunately, here
”next” always points to a ”row” object, so the conversion is safe.

Below we use recursion to implement the ”operator[]” member function,
which takes an integer argument ’i’ to return a copy of the value of the element
in column ’i’, if exists in the current row, or 0, if it doesn’t. First, the ”column”
field in the first element is examined. If it is equal to ’i’, then the required
element has been found, so its value is returned, as required. If, on the other
hand, it is greater than ’i’, then the current (well-ordered) row has no element
with column index ’i’ in it, so 0 is returned. Finally, if it is smaller than ’i’,
then the ”operator[]” is applied recursively to the tail of the row.

As before, the ”next” field must be converted explicitly from mere pointer-
to-linkedList to pointer-to-row before recursion can be applied to it. This is
done by inserting the prefix ”(row*)” before it.

The ”operator[]” function returns its output by value rather than by refer-
ence [as indeed indicated by the words ”const T” (rather than ”const T&”)
before its name], so that it can also return the local constant 0 whenever
appropriate.
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Furthermore, unlike ”operator()” in Section 20.6, ”operator[]” must always
take exactly one argument, as is indeed the case in the implementation below:

const T operator[](int i) const{
return (getColumn() == i) ?

getValue()
:
next&&(getColumn() < i) ?

At this stage, it is assumed that the column index of the first element in the
current row is different from ’i’, so the required element has not yet been found.
Now, if it is smaller than ’i’, then the required element may still lie ahead in
the row, so ”operator[]” should be applied recursively to the tail, which lies
in the ”next” field inherited from the base ”linkedList” class. However, since
”operator[]” applies to ”row” objects only, ”next” must first be converted
explicitly from mere pointer-to-linked-list to pointer-to-row:

(*(row*)next)[i]

If, on the other hand, the column index of the first element is greater than ’i’,
then the current (well-ordered) row contains no element with column index
’i’, so 0 should be returned:

:
0.;

} // read the value at column i

20.9 Update Operators

Recursion is also used in the member ”*=” operator that multiplies the
current row by a scalar:

const row& operator*=(const T&t){
item *= t;
if(next) *(row*)next *= t;
return *this;

} // multiply by a T

Indeed, the first element in the current row, ”item”, is first multiplied by the
scalar argument ’t’ by the ”*=” operator in Section 20.2. Then, recursion is
used to multiply the tail of the current row (which lies in the field ”next” in-
herited from the base ”linkedList” class) by ’t’ as well. However, the present
function applies to ”row” objects only; this is why ”next” must be converted
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explicitly from a mere pointer-to-linked-list to pointer-to-row before the re-
cursive call can be made.

The same approach is also used to divide the elements in the current row
by the nonzero scalar ’t’:

const row& operator/=(const T&t){
item /= t;
if(next) *(row*)next /= t;
return *this;

} // divide by a T

There is no need to implement here the ”+=” operator to add a row to
the current row, because this operator is inherited properly from the base
”linkedList” class.

20.10 Member Binary Operators

Recursion is also useful in binary arithmetic operators, such as the ’*’ op-
erator below that calculates the (real) inner product of the current (constant)
row and the dynamic-vector argument ’v’ (Chapter 9, Section 9.14):

const T
operator*(const dynamicVector<T>&v) const{

Indeed, if the current row has a nontrivial tail, then recursion can be used to
calculate its inner product with ’v’. To this, one only needs to add the value
of the first element in the current row times the corresponding component in
’v’:

return
next ?

getValue() * v[getColumn()]
+ *(row*)next * v

If, on the other hand, the current row has a trivial tail, then no recursion is
needed, and the required result is just the value of the only element in the
current row times the corresponding component in ’v’:

:
getValue() * v[getColumn()];
} // row times vector (real inner product)

};
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This completes the block of the ”row” class.
Note that functions that use recursion may call themselves many times.

Therefore, one should be careful to avoid expensive operations in them, such
as the construction of big objects like dynamic vectors.

20.11 Ordinary Binary Operators

Here we use the above update operators to define some ordinary binary
arithmetic operators between rows and scalars:

template<class T>
const row<T>
operator*(const row<T>&r, const T&t){
return row<T>(r) *= t;

} // row times T

Indeed, as a member function, the ”*=” operator can take the temporary
”row” object ”row<T>(r)” returned by the copy constructor inherited from
the base ”linkedList” class as its current object, multiply it by ’t’, and return
the result by value, as required.

Furthermore, the following version of the binary ’*’ operator works in the
same way, except it takes the arguments in the reversed order: first the scalar,
and then the row.

template<class T>
const row<T>
operator*(const T&t, const row<T>&r){
return row<T>(r) *= t;

} // T times row

With these versions, the user can write either ”r * t” or ”t * r” to calculate
the product of the well-defined row ’r’ with the scalar ’t’.

The same approach is now used to divide the row argument ’r’ by the
nonzero scalar ’t’:

template<class T>
const row<T>
operator/(const row<T>&r, const T&t){
return row<T>(r) /= t;

} // row divided by a T
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20.12 The Sparse-Matrix Object

As discussed in Chapter 19 above, the most efficient way to implement a
sparse matrix is as a list of linked lists of elements, or as a list of ”row” objects.
Indeed, this way, only the nonzero matrix elements are stored and take part
in the calculations, whereas the zero elements are ignored.

Although linked lists use indirect indexing, in which data are not stored
consecutively in the computer memory, which may lead to a longer compu-
tation time due to a slower data access, this overhead is far exceeded by the
saving gained by avoiding the unnecessary zero matrix elements. Furthermore,
in some cases, it is possible to map the linked list onto a more continuous data
structure and make the required calculations there.

The multilevel hierarchy of objects used to implement the sparse matrix
is displayed in Figure 20.2. The ”sparseMatrix” object at the top level is
implemented as a list of ”row” objects in the next lower level, which are in
turn implemented as linked lists of ”rowElement” objects, which are in turn
implemented in a template class, using the unspecified class ’T’ at the lowest
level to store the value of the matrix element.

The ”sparseMatrix” class below is derived from a list of ”row” objects (see
Figure 20.3). Thanks to this, it has access not only to public but also to
protected members of the base ”list” class in Chapter 17.

template<class T>
class sparseMatrix : public list<row<T> >{
public:
sparseMatrix(int n=0){
number = n;
item = n ? new row<T>*[n] : 0;
for(int i=0; i<n; i++)
item[i] = 0;

} // constructor

At the ’{’ symbol that marks the start of the block of this constructor, the
default constructor of the base ”list” class is called implicitly. Unfortunately,
this default constructor assumes the default value ”n= 0” in Chapter 17,
Section 17.2 to construct a trivial list with no items in it. This is why the
present constructor must assign its own integer argument ’n’ (which may well
be nonzero) to ”number” (the first field inherited from the base ”list” class),
and also allocate memory for the array ”item” (the second field inherited from
the base ”list” class), to contain ’n’ zero pointers that point to no row as yet.

The next constructor, on the other hand, also takes yet another scalar
argument, ’a’, and uses it (in a loop) to call the constructor of the ”row” class
and form a diagonal matrix with the value ’a’ on its main diagonal:
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’T’ object

row element

row

sparse matrix

?

?

?

FIGURE 20.2: The multilevel hierarchy of objects used to implement a sparse
matrix: the ”sparseMatrix” object is a list of ”row” objects, which are linked lists

of ”rowElement” objects, which use the template ’T’ to store the value of the
matrix elements.

-base class

list of rows

derived class

sparse matrix

FIGURE 20.3: Inheritance from the base class ”list<row>” to the derived
class ”sparseMatrix”.
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sparseMatrix(int n, const T&a){
number = n;
item = n ? new row<T>*[n] : 0;
for(int i=0; i<n; i++)
item[i] = new row<T>(a,i);

} // constructor of a diagonal matrix

The following constructor, on the other hand, takes yet another integer argu-
ment to serve as a column index at all the rows in the matrix. This way, a
column matrix (a matrix that contains one nonzero column only) is formed:

sparseMatrix(int n, const T&a, int col){
number = n;
item = n ? new row<T>*[n] : 0;
for(int i=0; i<n; i++)
item[i] = new row<T>(a,col);

} // constructor of a column matrix

Fortunately, no copy constructor or assignment operator needs to be defined,
because the corresponding functions inherited from the base ”list” class work
just fine.

The following destructor needs to do nothing, because the underlying ”list”
object is destroyed properly by the destructor of the base ”list” class invoked
implicitly at the ’}’ symbol that marks the end of its block:

~sparseMatrix(){
} // destructor

Finally, we also declare a constructor with a ”mesh” argument, to be defined
in detail later on in the book:

sparseMatrix(mesh<triangle>&);

In the three-dimensional applications at the end of the book, some more ver-
sions of constructors that take a ”mesh” argument are defined. These versions
should be declared here as well.

20.13 Reading a Matrix Element

The following function reads the ”(i,j)”th matrix element in the current
sparse matrix:

const T operator()(int i,int j) const{
return (*item[i])[j];

} // (i,j)th element (read only)
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Indeed, thanks to the fact that the array ”item” inherited from the base ”list”
class is declared as ”protected” (rather than the default ”private” status)
in Chapter 17, it can be accessed from the present function. Furthermore,
”item[i]”, the ’i’th entry in the array ”item”, points to the ’i’th row, ”*item[i]”.
Once the ”operator[]” in Section 20.8 is applied to this row, the required
matrix element is read. Still, since this operator may well return the zero
value if the ’j’th element in this row vanishes, the output must be returned
by value rather than by reference, as indeed indicated by the words ”const T”
(rather than ”const T&”) at the beginning of the header.

20.14 Some More Member Functions

The following function returns the number of rows in the current sparse
matrix:

int rowNumber() const{
return number;

} // number of rows

Furthermore, we also declare a function that returns the number of columns
[assuming that there are no zero columns at the end (far right) of the matrix].
The detailed definition of this function is left as an exercise, with a solution
in the appendix.

int columnNumber() const;

Finally, assuming that the above function has already been defined properly,
we define a function that returns the order of a square matrix:

int order() const{
return max(rowNumber(), columnNumber());

} // order of square matrix

Finally, we also declare some more member and friend functions:

const sparseMatrix& operator+=(const sparseMatrix<T>&);
const sparseMatrix& operator-=(const sparseMatrix<T>&);
const sparseMatrix<T>& operator*=(const T&);
friend const sparseMatrix<T>

operator*<T>(const sparseMatrix<T>&,
const sparseMatrix<T>&);

friend const sparseMatrix<T>
transpose<T>(const sparseMatrix<T>&);

const dynamicVector<int> colorNodes() const;
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const sparseMatrix<T> colorEdges() const;
void colorEdges(sparseMatrix<T>&,sparseMatrix<T>&) const;

};

These functions are only declared here; their detailed definitions are provided
later on in this chapter and in the appendix. This completes the block of the
”sparseMatrix” class.

In particular, the function ”transpose()” that returns the transpose of a
sparse matrix is defined in detail in the appendix. In what follows, however,
we assume that it has already been defined and can be called from other
functions.

Furthermore, the matrix-times-vector multiplication implemented in the
appendix uses the ’*’ operator in Section 20.10 to calculate the real inner
product (defined in Chapter 9, Section 9.14) between each row and the vector.

Finally, to implement matrix-times-matrix multiplication, the algorithm de-
scribed in Chapter 9, Section 9.10, is not very useful, because it uses mainly
column operations. A more suitable algorithm is the following one, which uses
row operations only.

Let A be a matrix with N rows, and let B be a matrix with N columns.
Let B(i) be the ith row in B. Then the ith row in BA can be written as

(BA)(i) = B(i)A.

Thus, each row in BA is the linear combination of rows in A with coefficients
from B(i). This linear combination can be calculated using row operations
only: the ’*’ operator in Section 20.11 to multiply a row by a scalar, and the
”+=” operator inherited from the base ”linkedList” class to add rows: The
detailed implementation is left as an exercise, with a solution in the appendix.

20.15 The Node-Coloring Code

The best way to color the nodes in a graph is by implementing the algorithm
in Chapter 19, Section 19.2, using the formulation of the graph as a (sparse)
matrix of the form

A ≡ (ai,j)0≤i,j<|N |

(where N is the set of the nodes in the graph, and |N | is its cardinality, or the
total number of nodes). This is indeed done below, using the sparse-matrix
object defined above.

In order to implement this algorithm, we first need to define an ordinary
function that takes a vector as an input argument and returns the index of
its first zero component. In other words, if the input vector is denoted by v,
then the function returns the nonnegative integer number i for which
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v0 6= 0, v1 6= 0, v2 6= 0, . . . , vi−1 6= 0, vi = 0.

int firstZero(const dynamicVector<int>&v){
int i=0;
while((i<v.dim())&&v[i])i++;
return i;

} // first zero component

This function is useful in the node-coloring code below. Indeed, suppose that
we have a vector named ”colors” whose dimension is the same as the number
of nodes in the graph, or the number of rows in the matrix associated with
the graph. Our aim is to store the color in which the ith node is colored in the
ith component in ”colors”. For this, we use an outer loop on the rows in the
matrix, using the index n = 0, 1, 2, . . . , |N |. For each particular n, we have
to color the nth node by assigning the color number to the corresponding
component in ”colors”, that is, to ”colors[n]”. To find a suitable color, we
must scan the nonzero matrix elements of the form an,j and aj,n (0 ≤ j < n)
to exclude the colors assigned to node j from the set of colors that can be
used to color node n:

template<class T>
const dynamicVector<int>
sparseMatrix<T>::colorNodes() const{
int colorsNumber = 0;
dynamicVector<int> colors(rowNumber(),-1);
sparseMatrix<T> At = transpose(*this);
for(int n=0; n<rowNumber(); n++){
dynamicVector<int> usedColors(colorsNumber,0);

The vector ”usedColors” contains the numbers of the colors that are candi-
dates to color the node n. Initially, all the components in this vector are set
to zero, which means that all the colors are good candidates to color the node
n. Then, an inner loop is used to eliminate the colors that cannot be used
because they have already been used to color neighbor nodes, that is, nodes
j for which either an,j 6= 0 or aj,n 6= 0:

for(const row<T>* j = item[n];
j&&(j->getColumn()<n);
j = (const row<T>*)j->readNext())

usedColors(colors[j->getColumn()]) = 1;

The nature of the pointer ’j’ used to scan the nth row will be explained later.
Anyway, the above loop excludes the colors of nodes j in this row from the
set of colors that can be used to color node n. Next, a similar loop is used to
exclude colors that have been used to color nodes in the nth column of the
current matrix, or the nth row in its transpose, ’At’:
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for(const row<T>* j = At.item[n];
j&&(j->getColumn()<n);
j = (const row<T>*)j->readNext())

usedColors(colors[j->getColumn()]) = 1;

In both of the above loops, ’j’ is a pointer-to-row that points to the nonzero
elements in the nth row in A (or At). Furthermore, ”j− >getColumn()” is the
index of the column in which this element is placed in the matrix. The color
that has been used to color the node corresponding to this index cannot be
used to color the node n, hence must be eliminated from the list of available
colors, which means that the component of ”usedColors” associated with it
must be set to 1.

Once these inner loops are complete, all that is left to do is to find an
available color, say the first component in ”usedColors” whose value is still
zero, which means that it has never been used to color any neighbor of the
node n:

int availableColor = firstZero(usedColors);

This color can now be used to color the node n. Only when ”usedColors”
contains no zero component, which means that no color is available, must a
new color be introduced, and the total number of colors increases by 1:

colors(n) = availableColor<usedColors.dim() ?
availableColor : colorsNumber++;

}
return colors;

} // color nodes

Finally, the ”colorNodes” function returns the |N |-dimensional vector whose
components are the colors of the nodes in N .

20.16 Edge Coloring in a Nonoriented Graph

A somewhat more difficult task is to color the edges in a graph. We start
with the easier case, in which the graph is nonoriented, so it can be formu-
lated as a symmetric matrix. This formulation proves to be most helpful in
implementing the edge-coloring algorithm in Chapter 19, Section 19.8.

template<class T>
const sparseMatrix<T>
sparseMatrix<T>::colorEdges() const{
int colorsNumber = 0;
sparseMatrix<T> c(rowNumber());
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The sparse matrix ’c’ produced and returned by the ”colorEdges” function
contains the numbers ci,j , which are the colors assigned to the edges ai,j . For
this purpose, we use a triple nested loop: the outer loop scans the nodes in
the graph, or the rows in the original matrix A. For this purpose, we use the
index n, starting at the minimal n for which the n × n upper-left submatrix
An doesn’t vanish.

int n=0;
while((n<rowNumber())&&(n<item[n]->getColumn()))n++;
for(; n<rowNumber(); n++){
dynamicVector<int> usedColorsN(colorsNumber,0);

For each such n, we use an inner loop to color the nonzero elements of the
form an,j (0 ≤ j ≤ n).

for(const row<T>* j = item[n];
j&&(j->getColumn()<=n);
j = (const row<T>*)j->readNext()){

dynamicVector<int> usedColorsJ(usedColorsN.dim(),0);

For each particular j, we use a yet inner loop to eliminate the colors that have
been used to color any element in the jth row in An−1, and not use it to color
an,j . These colors are eliminated from the set of available colors by setting
the corresponding component in the vector ”usedColorsJ” to 1.

if(j->getColumn()<n)
for(const row<int>* k = c.item[j->getColumn()];

k&&(k->getColumn()<n);
k = (const row<int>*)k->readNext())

usedColorsJ(k->getValue()) = 1;

Furthermore, the colors that have been used previously to color any of the
elements an,0, an,1, . . ., an,j−1 must also be excluded from the candidates to
color an,j ; this will be done below by setting the corresponding components
of the vector ”usedColorsN” to 1.

Thus, the best candidate to color an,j is the one whose number is the index
of the first component that vanishes in both ”usedColorsJ” and ”usedCol-
orsN”. Indeed, this color has never been used to color any element in either
the jth or the nth rows of An, hence is a good candidate to color an,j :

int availableColor=firstZero(usedColorsN+usedColorsJ);

This number is denoted by ”availableColor” in the above code. If, however, no
such color is available, a new color must be introduced, and the total number
of colors must increase by 1:

int colorNJ =
availableColor<usedColorsN.dim() ?
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availableColor : colorsNumber++;
if(colorNJ<usedColorsN.dim())usedColorsN(colorNJ) = 1;

The number of the color by which an,j is colored, may it be new or old, is now
placed in the variable ”colorNJ”. This number is also placed now in the (n, j)th
element in the matrix c produced in the function. For this, however, we must
first check whether the nth row in the matrix c has already been constructed.
If it has, then the new element cn,j is added at the end of it by the ”append”
function; otherwise, the nth row in the matrix c must be constructed using
the constructor of the ”row” class and the ”new” command:

if(c.item[n])
c.item[n]->append(colorNJ,j->getColumn());

else
c.item[n] = new row<T>(colorNJ,j->getColumn());

Finally, if j < n, then cj,n is also defined symmetrically by

cj,n ≡ cn,j :

if(j->getColumn()<n){
if(c.item[j->getColumn()])
c.item[j->getColumn()]->append(colorNJ,n);

else
c.item[j->getColumn()] = new row<T>(colorNJ,n);

}
}

}
return c;

} // color edges in a nonoriented graph

This way, the symmetric sparse matrix c returned by the function contains
the colors ci,j used to color the edges ai,j of a nonoriented graph, as in the
algorithm in Chapter 19, Section 19.8. Below we also implement the algorithm
to color the edges in a general oriented graph.

20.17 Edge Coloring in an Oriented Graph

In the above, we have implemented the algorithm to color the edges in
a nonoriented graph, using its formulation as a symmetric matrix and the
edge-coloring algorithm in Chapter 19, Section 19.8 above. Here we turn to
the slightly more complicated task of coloring the edges in a general oriented
graph, using its formulation as a sparse matrix and the algorithm in Chapter
19, Section 19.3.
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Because the matrix of an oriented graph is in general nonsymmetric, the
next version of the ”colorEdge” function is different from the previous version
in that it produces not only the matrix c that contains the colors ci,j used
to color the edges ai,j in the original graph but also its transpose ct. This
transpose matrix is used throughout the function to scan the rows in the
sparse matrix ct, which are actually the columns in the matrix c.

The present version of the function ”colorEdges” requires two arguments:
the sparse matrices c and ct. It is assumed that these matrices have the same
number of rows as A, the original matrix of the graph (which is assumed to
be the current sparse-matrix object), and that these rows have not yet been
constructed, so they have initially zero addresses. Thanks to the fact that
both c and ct are passed to the function as nonconstant references to sparse
matrices, they can be changed throughout the function to take their final
values as the required matrix of colors c = (ci,j) and its transpose ct = (cj,i).

template<class T>
void
sparseMatrix<T>::
colorEdges(sparseMatrix<T>&c, sparseMatrix<T>&ct) const{
int colorsNumber = 0;
const sparseMatrix<T> At = transpose(*this);

The transpose of A, At, is constructed using the function ”transpose()” to
allow one to scan not only the rows of A but also the rows of At, or the
columns of A, as indeed required in the algorithm in Chapter 19, Section
19.3.

Next, a triple nested loop is carried out in much the same way as in the
nonoriented case above:

int n=0;
while((n<rowNumber())&&(n<item[n]->getColumn())

&&(n<At.item[n]->getColumn()))n++;
for(; n<rowNumber(); n++){
dynamicVector<int> usedColorsN(colorsNumber,0);
for(const row<T>* j = item[n];

j&&(j->getColumn()<=n);
j = (const row<T>*)j->readNext()){

dynamicVector<int> usedColorsJ(usedColorsN.dim(),0);
if(j->getColumn()<n){
for(const row<int>* k = c.item[j->getColumn()];

k&&(k->getColumn()<n);
k = (const row<int>*)k->readNext())

usedColorsJ(k->getValue()) = 1;

Unlike in the nonoriented case, however, here c is in general nonsymmetric;
this is why one must also scan the jth row in ct (or the jth column in c) to
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eliminate the colors used previously in it from the set of candidates to color
the current edge an,j :

for(const row<int>* k = ct.item[j->getColumn()];
k&&(k->getColumn()<n);
k = (const row<int>*)k->readNext())

usedColorsJ(k->getValue()) = 1;
}
int availableColor=firstZero(usedColorsN+usedColorsJ);
int colorNJ =

availableColor<usedColorsN.dim() ?
availableColor : colorsNumber++;

if(colorNJ<usedColorsN.dim())usedColorsN(colorNJ) = 1;
if(c.item[n])
c.item[n]->append(colorNJ,j->getColumn());

else
c.item[n] = new row<T>(colorNJ,j->getColumn());

Furthermore, once the best candidate to color an,j has been found and placed
in the variable ”colorNJ”, it is placed not only in cn,j but also in ct

j,n:

if(ct.item[j->getColumn()])
ct.item[j->getColumn()]->append(colorNJ,n);

else
ct.item[j->getColumn()] = new row<T>(colorNJ,n);

}

Moreover, a similar inner loop is carried out once again to color the elements
aj,n (0 ≤ j < n) in the nth column of A (or in the nth row of At), as in Step
2 in the algorithm in Chapter 19, Section 19.3:

for(const row<T>* j = At.item[n];
j&&(j->getColumn()<n);
j = (const row<T>*)j->readNext()){

dynamicVector<int> usedColorsJ(usedColorsN.dim(),0);
for(const row<int>* k = ct.item[j->getColumn()];

k&&(k->getColumn()<n);
k = (const row<int>*)k->readNext())

usedColorsJ(k->getValue()) = 1;

Again, one must exclude from the list of candidates to color aj,n not only the
colors that have been used previously to color the jth row in ct (or the jth
column in c) but also those that have been used to color the jth row in c:

for(const row<int>* k = c.item[j->getColumn()];
k&&(k->getColumn()<n);
k = (const row<int>*)k->readNext())

usedColorsJ(k->getValue()) = 1;
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Clearly, one must also exclude colors that have been used previously to color
any element in the nth row or the nth column of A; this will be done further
below.

The best candidate to color aj,n is, thus, the one that still has the value 0
in both ”usedColorsJ” (the vector that indicates what colors have been used
in the jth row and jth column in c) and ”usedColorsN” (the vector that
indicates what colors have been used in the nth row and nth column in c):

int availableColor=firstZero(usedColorsN+usedColorsJ);

The number of this color is now placed in the variable ”availableColor”. Next,
it is also placed in the variable ”colorJN”. If, however, all the colors have been
excluded from the set of candidates to color aj,n, then a new color must be
introduced, and the total number of colors must increase by 1. In this case,
”colorJN” takes the number of this new color:

int colorJN =
availableColor<usedColorsN.dim() ?
availableColor : colorsNumber++;

if(colorJN<usedColorsN.dim())usedColorsN(colorJN) = 1;

The desired color number in ”colorJN” is now placed in its proper place in
ct
n,j and cj,n:

if(ct.item[n])
ct.item[n]->append(colorJN,j->getColumn());

else
ct.item[n] = new row<T>(colorJN,j->getColumn());

if(c.item[j->getColumn()])
c.item[j->getColumn()]->append(colorJN,n);

else
c.item[j->getColumn()] = new row<T>(colorJN,n);

}

Note, however, that the element ct
n,n has been constructed in the first inner

loop, before the elements of the form ct
n,j (j < n) have been constructed in the

second inner loop. As a result, the elements in the nth row in ct may be not
in the required increasing-column order. To fix this, we apply the ”order()”
function inherited from the base ”linkedList” class:

ct.item[n]->order(ct.item[n]->length());
}

} // color edges

This completes the implementation of the algorithm in Chapter 19, Section
19.3, to color the edges in a general oriented graph.

The user can now call either version of the ”colorEdges” functions defined
above. If the call is made with no arguments, then the compiler would invoke
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the first version to color a nonoriented graph. If, on the other hand, two
arguments of type ”sparseMatrix” are used, then the compiler would invoke
the second version to color a general oriented graph. These arguments would
then change throughout the call, and would eventually contain the required
matrix of colors c and its transpose ct.

Here is how the above functions can be used to color the nodes and the
edges in a graph represented by a 5× 5 matrix ’B’, with nonzero elements on
its diagonal and on its second and fifth columns only:

int main(){
sparseMatrix<int> B(5,1);
sparseMatrix<int> Col1(5,1,1);
sparseMatrix<int> Col4(5,1,4);
sparseMatrix<int> B += Col1 + Col4;
print(B.colorNodes());
sparseMatrix<int> C(B.rowNumber());
sparseMatrix<int> Ct(B.rowNumber());
B.colorEdges(C,Ct);
print(C);
print(Ct);
return 0;

}

20.18 Exercises

1. Implement arithmetic operations with sparse matrices, such as addition,
subtraction, multiplication by scalar, matrix times dynamic vector, and
matrix times matrix. The solution can be found in Section 28.14 in the
appendix.

2. Implement the ”columnNumber” member function that returns the num-
ber of columns (the maximum column index in the elements in the rows).
The solution can be found in Section 28.14 in the appendix.

3. Write the ”transpose” function that takes a sparse matrix A as a constant
argument and returns its transpose At. The solution can be found in
Section 28.14 in the appendix.

4. Does this function have to be a friend of the ”sparseMatrix” class? Why?
5. Use the sparse-matrix object to implement the alternative coloring algo-

rithms in the last exercises at the end of Chapters 11 and 19.
6. Test which edge-coloring algorithm is more efficient: the original one or

the alternative one.
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Meshes

In the implementation of a graph as a sparse matrix, the node is the key object.
In fact, the nodes in the graph are indexed by the index i = 1, 2, 3, . . . , |N |,
where N is the set of nodes and |N | is its cardinality (the total number of
nodes). The index i of the ith node serves then as its virtual address in the
list of nodes, which allows one to access the information about its role in the
graph. Indeed, this information can be found in the ith row in the matrix of
the graph, in which the matrix elements indicate from which nodes edges are
issued towards the ith node. Furthermore, the ith row in the transpose of the
matrix of the graph indicates towards which nodes edges are issued from the
ith node.

Thus, in the above implementation, a node is implemented only virtually as
a row index. All the information about the ith node, namely, the edges issued
from or directed to it, is stored in the ith row as a linked list of indices (or
virtual addresses) of nodes that are connected to it in the graph. This is only
natural: after all, a graph is a purely abstract mathematical concept, so no
wonder it is implemented in terms of virtual indices rather than any physical
or geometrical terms.

This is no longer the case with more concrete graphs such as meshes and
triangulations, which have a more concrete geometrical interpretation. Indeed,
in a mesh or a triangulation, a node has a concrete geometrical interpretation
as a point in the Cartesian plane. Furthermore, the axioms by which the mesh
or the triangulation is defined (Chapter 11, Section 11.8 and the last exercise)
imply that not the node but rather the cell (or the triangle) is the basic object
with which the mesh (or the triangulation) is built. Indeed, these axioms imply
that nodes serve not as basic objects but rather as mere vertices in cells.

Thus, the cells, whose existence is guaranteed by the axioms, are the basic
brick with which the mesh is built. Indeed, the cells are the objects that are
colored in the coloring problem and algorithm. Therefore, the cells are the ones
that should be indexed; the nodes don’t have to be indexed any more, unless
the node-coloring problem should be solved as well. For the node-coloring
problem, however, the mesh object is useless; the matrix of the graph must
be constructed, and the node-coloring algorithm must be applied to it as in
Chapter 20, Section 20.15.

In summary, the mesh is produced by a multilevel hierarchy of mathematical
objects. The node object at the lowest level carries the geometrical information
about its location in the Cartesian plane. This node can be used as a vertex in

445
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many cells, so it must be pointed at from each such cell. Thus, the cell object
is implemented as a list of pointers-to-nodes. In particular, the triangle in a
triangulation is implemented as a list of three pointers-to-nodes. Finally, the
mesh object is implemented as a linked list of cells, to allow a high degree of
flexibility in introducing new cells and dropping old ones. The implementation
of the mesh as a linked list of cells is also most suitable to implement the cell-
coloring algorithm in a short and transparent code.

21.1 The Node Object

Here we introduce the node object, the most elementary object in the mul-
tilevel hierarchy used in our object-oriented framework. Later on, we’ll use the
”node” object to define more complicated objects, such as cells and meshes.

In a mesh, a node may be shared by two or more cells. This is why the node
object must contain information not only about its geometric location but
also about the number of cells that share it. For this, the node object must
contain three data fields: the first to specify its geometric location, the second
to specify its index in the list of nodes in the entire mesh, and the third to
specify the number of cells that share it as their joint vertex.

template<class T> class node{
T location;
int index;
int sharingCells;

The type of the first data field, named ”location”, is ’T’, to be specified later
(upon the construction of a concrete node in compilation time) as a point in
the Cartesian plane or the three-dimensional Cartesian space.

The two remaining data fields, the index of the node and the number of
cells that share it, can be set only when the entire mesh is ready. When an
individual node is originally constructed, these fields are initialized with the
trivial values −1 and 0, to indicate that this is indeed an isolated new node
that hasn’t yet been placed in a mesh or even in a cell:

public:
node(const T&loc=0., int ind=-1, int sharing=0)
: location(loc),index(ind),sharingCells(sharing){
} // constructor

With this constructor, the user can write commands like ”node<point> n” to
construct the isolated node ’n’ at the origin (0, 0). Indeed, upon encountering
such a command, the compiler invokes the first constructor in Chapter 16,
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Section 16.4 to initialize the dummy ”point” argument ”loc” with the value
(0, 0).

An initialization list is also used in the copy constructor:

node(const node&n):location(n.location),index(n.index),
sharingCells(n.sharingCells){

} // copy constructor

As before, the data fields in the constructed ”node” object are initialized in
the initialization list in the order in which they are listed in the class block.
In particular, the field ”index” in the constructed node is initialized with
the value ”n.index”, and the field ”sharingCells” in the constructed node is
initialized with the value ”n.sharingCells”. This seems unnecessary, since the
constructed node belongs to no cell as yet. Therefore, it may make more sense
to initialize these fields with the trivial values −1 and 0 (respectively), as in
the previous constructor. This way, a node argument that is passed by value to
a function would be copied into a dangling local (dummy) node that belongs
to no cell, which seems to make more sense. This version, however, is left to
the reader to check. Fortunately, in the present applications node arguments
are passed by reference only, so it makes little difference what version of the
copy constructor is actually used.

The assignment operator is only declared here; the detailed definition will
be given later on.

const node& operator=(const node&);

Since there are no pointer fields, the block of the destructor remains empty.
Indeed, the data fields are destroyed implicitly automatically one by one (in
an order reversed to the order in which they are listed in the class block) at
the ’}’ symbol that marks the end of the following block:

~node(){
} // destructor

21.2 Reading and Accessing Data Fields

The following member function reads the location of the current ”node”
object:

const T& operator()() const{
return location;

} // read the location

© 2009 by Taylor and Francis Group, LLC



448 CHAPTER 21. MESHES

With this operator, the user can write ”n()” to read the location of the well-
defined ”node” object ’n’.

The following member function reads the ”index” field in the current ”node”
object:

int getIndex() const{
return index;

} // read index

The following member function sets the ”index” field of the current ”node”
object to have the value ’i’:

void setIndex(int i){
index = i;

} // set index

So far, we have dealt with the first data field in the ”node” object, ”location”,
and with the second field, ”index”. Next, we consider the third data field,
”sharingCells”, which will be most useful when the individual node is placed
in a mesh. Indeed, the value of ”sharingCells” increases by 1 whenever a new
cell that shares the node is created, and decreases by 1 whenever such a cell is
destroyed. Therefore, we have to define public member functions to increase,
decrease, and read the value of the ”sharingCells” data field:

int getSharingCells() const{
return sharingCells;

} // read number of cells that share this node

This function reads the private ”sharingCells” fields in the current ”node”
object. The next member function increases the value of this field by one:

void moreSharingCells(){
sharingCells++;

} // increase number of cells that share this node

The next member function, on the other hand, decreases the ”sharingCells”
field by one. Furthermore, it also returns 0 so long as the node still serves as
a vertex in at least one cell, and 1 once it becomes an isolated node shared
by no cell:

int lessSharingCells(){
return
sharingCells ?
!(--sharingCells)

:
1;

} // decrease number of cells that share this node
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Finally, the following member function checks whether or not the current node
is indeed an isolated node shared by no cell. Indeed, like the previous function,
it returns a nonzero value if and only if ”sharingCells” vanishes:

int noSharingCell() const{
return !sharingCells;

} // an isolated node
};

This completes the block of the ”node” class.
To complete the implementation, here is also the detailed definition of the

assignment operator declared in the block of the ”node” class:

template<class T>
const node<T>&
node<T>::operator=(const node<T>&n){
if(this != &n){
location = n.location;
index = n.index;
sharingCells = n.sharingCells;

}
return *this;

} // assignment operator

Finally, the following ordinary function prints the data fields in its ”node”
argument onto the screen:

template<class T>
void print(const node<T>&n){
print(n());
printf("index=%d; %d sharing cells\n",

n.getIndex(),n.getSharingCells());
} // print a node

21.3 The Cell – a Highly Abstract Object

As we have seen in Chapter 11 above, a graph is defined in terms of nodes
and edges only. These objects are absolutely abstract: they have no geomet-
rical interpretation whatsoever.

The first time that a geometrical sense is introduced is in Section 11.8 in
Chapter 11, in which the triangulation is defined. Indeed, the nodes in the
triangulation can be viewed as points in the Cartesian plane, and the edges
can be viewed as line segments that connect them to each other. Still, the
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triangles in the triangulation are never defined explicitly; their existence only
follows implicitly from the axioms in Chapter 11, Section 11.8.

The concept of triangulation is extended in the last exercise in Chapter 11
into a more general mesh of cells. When the cells are triangles, we have a
triangulation. When the cells are squares, we have a mesh of squares, and so
on. Again, the cells are never defined explicitly or used to define the graph:
they only exist in our imagination.

Thus, the cells are even more abstract than the nodes: they are never used
or needed to construct the graph. One may even say that they don’t really
exist.

Why then are the cells still important and useful? Because they can serve as
abstract containers to contain the more concrete objects, the nodes. Indeed,
the vertices of a particular cell are listed one by one in it, to indicate that
they indeed belong to it and indeed connected by edges in the original graph.
More precisely, the cell contains only references to its vertices. This way, a
node can be referred to from every cell that uses it as a vertex.

This approach indeed agrees with the high level of abstraction of the cell
object. Indeed, the cell object is highly abstract not only in the mathematical
sense, which means that it is only used in the axioms required in a triangula-
tion (or a mesh of cells) rather than in the original definition of the concrete
graph, but also in the practical sense, which means that it contains no concrete
physical nodes but merely references to existing nodes. We can thus see clearly
how the implementation is indeed in the spirit of the original mathematical
formulation.

Because the cell object is so abstract, it must also be implemented in a
rather nonstandard way. Indeed, as discussed above, objects that contain
pointer fields must use the ”new” command in their constructors to allocate
sufficient memory for the objects pointed at by them, and the ”delete” com-
mand in their destructors to release this memory. This is why one is advised
to write his/her own constructors and destructors, and not rely on the default
constructor and destructor available in the C++ compiler, which never allo-
cate memory for, initialize, or release the memory occupied by the variables
pointed at by pointer fields.

In the constructors of the cell object, on the other hand, no new memory
needs to be allocated for any new node. In fact, only a new reference to an
existing node is defined, rather than a new physical node. This nonstandard
nature of the cell object is discussed further below.
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21.4 The Cell Object

As discussed above, the ”cell” object contains no concrete ”node” objects
but rather pointers to nodes only. This way, two cells can share a node as
their joint vertex by containing a pointer to it. This way, each cell can access
the node through its own pointer field.

More precisely, the ”cell” object contains ’N’ pointers to nodes, and each
node has a ”location” field of type ’T’, where both ’N’ and ’T’ are template
parameters, to be specified upon construction later on in compilation time. In
a triangulation, for example, ’T’ is specified to be the ”point” class, and ’N’
is specified to be 3, the number of vertices in each triangle.

template<class T, int N> class cell{
node<T>* vertex[N];
int index;

The first data field, ”vertex”, is an array of ’N’ pointers to nodes to point to
the ’N’ vertices of the cell. The second field, ”index”, will be used to store the
index of the cell in the list of cells in the entire mesh.

In the following default constructor, ”index” is set to −1, to indicate that
the constructed cell has not been placed in any mesh as yet. Furthermore,
the vertices are all set to lie at the origin, using the ”new” command and the
constructor of the ”node” class in Section 21.1:

public:
cell():index(-1){
for(int i=0; i<N; i++)
vertex[i] = new node<T>(0.,-1,1);

} // default constructor

Clearly, this is a trivial meaningless cell. Next, we declare a more meaningful
constructor that takes three ”node” arguments to serve as its vertices. This
constructor will be defined in detail later on.

cell(node<T>&,node<T>&,node<T>&);

Next, we also declare a constructor that takes four ”node” arguments to
serve as its vertices. This constructor will be particularly useful in the three-
dimensional applications at the end of the book to construct a tetrahedron
with four vertices.

cell(node<T>&,node<T>&,node<T>&,node<T>&);

This constructor will also be defined later on. Furthermore, the copy con-
structor, assignment operator, and destructor declared next will all be defined
explicitly later on.
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cell(cell<T,N>&);

const cell<T,N>&
operator=(cell<T,N>&);

~cell();

21.5 Reading and Accessing Vertices

The following member operator takes the integer argument ’i’ and returns
a nonconstant reference to the ’i’th vertex in the cell:

node<T>& operator()(int i){
return *(vertex[i]);

} // read/write ith vertex

Indeed, ”vertex[i]” (the ’i’th entry in the data field ”vertex”) is a pointer to
the ’i’th vertex in the cell. Its content, ”*vertex[i]”, is therefore the ’i’th vertex
itself. Thanks to the word ”node<T>&” at the beginning of the header, this
vertex is indeed returned by nonconstant reference, so it can be accessed (and
indeed changed if necessary) in the same code line in which the operator is
called. For example, with the above operator, the user can write ”c(i) = n”
to assign the node ’n’ to the ’i’th vertex in the cell ’c’ as well.

The next, operator, on the other hand, returns a constant reference to the
’i’th vertex in the current cell (as is indeed indicated by the words ”const
node<T>&” at the beginning of the header), which can be used for read-
ing but not for changing. Indeed, the reserved word ”const” just before the
function block guarantees that the current ”cell” object can never change in
it:

const node<T>&
operator[](int i)const{
return *(vertex[i]);

} // read only ith vertex

The following member function sets the ”index” field in each individual vertex
in the cell to its default value −1: Since this field is private in the ”node” class,
this must be done by calling the public ”setIndex” function of this class:

void resetIndices(){
for(int i=0; i<N; i++)
vertex[i]->setIndex(-1);

} // reset indices to -1
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The negative indices −1 assigned to the individual vertices in the cell indicates
that these vertices have not yet been indexed properly in the list of nodes in
the entire mesh. The following function, on the other hand, gives meaningful
indices to every vertex that has not yet been indexed:

void indexing(int&count){

Indeed, its integer argument ”count” stands for the number of nodes that have
been indexed so far in the entire mesh. The following loop scans the vertices
in the current cell one by one, indexes (by a continuously increasing index)
each vertex that has not yet been indexed, and increments ”count” by one:

for(int i=0; i<N; i++)
if(vertex[i]->getIndex()<0)
vertex[i]->setIndex(count++);

} // indexing the unindexed vertices

Fortunately, ”count” has been passed to the function by (nonconstant) ref-
erence, so it indeed changes throughout the function to store the up-to-date
number of nodes that have been indexed so far in the entire mesh. This new
value can then be used to reapply the function to the next cell in the mesh to
index the vertices in it that have not been indexed as yet.

So far, we have considered the indices of the individual vertices in the cell.
Next, we consider the index of the current cell itself (in the list of cells in the
entire mesh), stored in the integer data field ”index” in the ”cell” class. The
following member function sets the value of this field to the integer argument
’i’:

void setIndex(int i){
index = i;

} // set the index of the cell to i

Furthermore, the following function reads this field:

int getIndex() const{
return index;

} // read the index of the cell
};

This completes the block of the ”cell” class. The member functions that are
only declared in it are defined explicitly next.

21.6 Constructors

Here is the constructor that takes three ”node” arguments to construct a
cell with three vertices, or a triangle:
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template<class T, int N>
cell<T,N>::cell(

node<T>&a, node<T>&b, node<T>&c):index(-1){

The ”node” arguments are now considered one by one. If the first ”node”
argument, ’a’, is not used as a vertex in any other cell, then its ”sharing-
Cells” field must vanish, so its member ”noSharingCell” function must return
a nonzero value. In this case, the ”new” command and the copy constructor
of the ”node” class are invoked to allocate memory for the first vertex in the
constructed cell and copy ’a’ into it. If, on the other hand, ’a’ already serves as
a vertex in some other cell, then it doesn’t have to be reconstructed; instead,
its address is placed in the first vertex in the constructed cell to indicate that
it serves as a vertex in this cell as well:

vertex[0] = a.noSharingCell() ? new node<T>(a) : &a;

The same approach is now used for the remaining ”node” arguments ’b’ and
’c’:

vertex[1] = b.noSharingCell() ? new node<T>(b) : &b;
vertex[2] = c.noSharingCell() ? new node<T>(c) : &c;

Finally, the ”sharingCells” field in each vertex in the newly constructed cell
is incremented by 1 to indicate that it serves as a vertex in one more cell:

for(int i=0; i<N; i++)
vertex[i]->moreSharingCells();

} // constructor with 3 node arguments

This is also why the ”node” arguments passed to this function must be non-
constant. After all, they may change in the above command line.

The same approach is also used in the next constructor, which takes four
”node” arguments to construct a cell with four vertices, such as a tetrahedron
in a three-dimensional mesh:

template<class T, int N>
cell<T,N>::cell(node<T>&a, node<T>&b,

node<T>&c, node<T>&d){
vertex[0] = a.noSharingElement() ? new node<T>(a) : &a;
vertex[1] = b.noSharingElement() ? new node<T>(b) : &b;
vertex[2] = c.noSharingElement() ? new node<T>(c) : &c;
vertex[3] = d.noSharingElement() ? new node<T>(d) : &d;
for(int i=0; i<N; i++)
vertex[i]->moreSharingElements();

} // constructor with 4 node arguments

The copy constructor below takes a well-defined, nontrivial ”cell” argument
’e’. First, the address of each vertex of ’e’ is also placed in the corresponding
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pointer-to-node in the constructed cell, to indicate that this node serves as its
vertex as well:

template<class T, int N>
cell<T,N>::cell(cell<T,N>&e):index(e.index){
for(int i=0; i<N; i++){
vertex[i] = e.vertex[i];

Then, the ”sharingCells” field in each vertex is incremented by 1 to indicate
that this node is now shared by one more cell:

vertex[i]->moreSharingCells();
}

} // copy constructor

This is also why the ”cell” argument passed to this function must be non-
constant. After all, it changes in the above command line.

21.7 The Assignment Operator

The assignment operator is defined as follows:

template<class T, int N>
const cell<T,N>&
cell<T,N>::operator=(cell<T,N>&e){
if(this != &e){
index = e.index;

First, the current cell is ”removed” by scanning its vertices and ”removing”
them one by one by invoking the ”lessSharingCells” to decrease by one the
number of cells that share them. Only if the ”lessSharingCells” returns a
nonzero value (which indicates that the node under consideration is shared
by no cell) is it removed physically by the destructor of the ”node” class,
invoked implicitly when the ”delete” command is applied to its address:

for(int i=0; i<N; i++)
if(vertex[i]->lessSharingCells())
delete vertex[i];

Once the current cell has been removed, it is reconstructed again as in the
copy constructor above:

for(int i=0; i<N; i++){
vertex[i] = e.vertex[i];
vertex[i]->moreSharingCells();
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}
}
return *this;

} // assignment operator

The destructor also uses the same loop as in the first part of the above
assignment operator:

template<class T, int N>
cell<T,N>::~cell(){
for(int i=0; i<N; i++)
if(vertex[i]->lessSharingCells())
delete vertex[i];

} // destructor

21.8 Nodes in a Cell

The ordinary ”operator<” function defined below takes a ”node” argument
’n’ and a ”cell” argument ’e’, and checks whether ’n’ indeed serves as a vertex
in ’e’. If it does, then the function returns the index on ’n’ in the array ”vertex”
in ’e’ plus 1. If, on the other hand, it doesn’t, then it returns 0.

template<class T, int N>
int
operator<(const node<T>&n, const cell<T,N>&e){

In the following loop, the vertices in ’e’ are scanned:

for(int i=0; i<N; i++)

By using the ”operator[]” in Section 21.5, we have that ”e[i]” returns the ’i’th
vertex in ’e’ by reference. If the address of this vertex (or the entry ”vertex[i]”
in the array-of-pointers ”vertex” in ’e’) is indeed the same as the address of
’n’, then ’n’ is indeed the ’i’th vertex in ’e’, so ’i’+1 is returned:

if(&n == &(e[i]))
return i+1;

If, on the other hand, no vertex has been found with the same address as ’n’,
then the conclusion is that ’n’ is not a vertex in ’e’, so 0 is returned:

return 0;
} // check whether a node n is in a cell e
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With this operator, the user can write ”n < e” to check whether the well-
defined node ’n’ is indeed a vertex in the well-defined cell ’e’. In fact, the ’<’
symbol is chosen here because it is similar to the standard ’∈’ symbol used
often in set theory.

Finally, we define an ordinary function that prints the vertices in the cell
onto the screen:

template<class T, int N>
void print(const cell<T,N>&e){
for(int i=0; i<N; i++)
print(e[i]);

} // printing a cell

The ”typedef” command is now used to define short and convenient types:
”triangle” for a cell with three vertices in the Cartesian plane,

typedef cell<point,3> triangle;

and ”tetrahedron” for a cell with four vertices in the three-dimensional Carte-
sian space.

typedef cell<point3,4> tetrahedron;

21.9 Edge-Sharing Cells

The following operator checks whether two cells share an edge or not. It
takes two arguments (of type constant references to cells), denoted by ’e’ and
’f’. Then, it uses a nested double loop (with distinct indices denoted by ’i’ and
’j’) to scan the vertices in ’e’. In the inner loop, the ’<’ operator in Section
21.8 is invoked twice to find two distinct vertices ”e[i]” and ”e[j]” that belong
not only to ’e’ but also to ’f’. If such vertices are indeed found, then this means
that the cells ’e’ and ’f’ do indeed share an edge, so the function returns the
output 1 (true). If, on the other hand, no such vertices have been found, then
the function returns the output 0 (false):

template<class T, int N>
int operator&(const cell<T,N>&e, const cell<T,N>&f){
for(int i=1; i<N; i++)
for(int j=0; j<i; j++)
if((e[i] < f)&&(e[j] < f)) return 1;

return 0;
} // edge-sharing cells
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With this operator, the user can write just ”e & f” to check whether the well-
defined cells ’e’ and ’f’ indeed share an edge. This operator is used later on to
color the cells in the mesh.

21.10 The Mesh Object

The ”mesh” template class is derived below from a linked list of objects of
type ’T’, to be specified later (upon construction of a concrete ”mesh” ob-
ject) as a triangle (in a triangulation) or a tetrahedron (in a three-dimensional
mesh). This derivation (Figure 21.1) allows one to insert new cells or remove
unnecessary cells easily and efficiently by calling the suitable functions inher-
ited from the base ”linkedList” class.

In the multilevel hierarchy of objects used to implement the mesh (Figure
21.2), the ”mesh” object at the top level is a linked list of ”cell” objects in the
next lower level, each of which is a list of (pointers to) ”node” objects, each
of which contains a ”point” object at the lowest level to store its location in
the Cartesian plane.

-base class

linked list of cells

derived class

mesh

FIGURE 21.1: Inheritance from the base class ”linkedList” to the derived
class ”mesh”.

template<class T>
class mesh : public linkedList<T>{

The ”mesh” class contains no data field but the data fields ”item” and ”next”
inherited from the base ”linkedList” class in Chapter 17, Section 17.3.

The default constructor below has an empty block. At the ’{’ symbol that
marks the start of this block, the default constructor of the base ”linkedList”
class in Chapter 17, Section 17.3 is called implicitly automatically. However,
this constructor has an empty block as well. All that it does is to call implicitly
the default constructor of class ’T’ to construct its ”item” field, and then to
initialize the ”next” pointer (as in its initialization list) with the zero value
to indicate that it points to no item.

public:
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point
(geometric location)

node

cell

mesh

?

?

?

FIGURE 21.2: The multilevel hierarchy of objects used to implement the
mesh as a linked list of ”cell” objects, each of which is a list of (pointers to)

”node” objects, each of which contains a ”point” object to indicate its location in
the Cartesian plane.

mesh(){
} // default constructor

For example, if ’T’ is the ”cell” class, then the default constructor in Sec-
tion 21.4 produces a cell ”item” whose vertices lie at the origin and have
”sharingCells” fields that are equal to 1 and ”index” fields that are equal to
−1.

The next constructor, on the other hand, does a little more. At the begin-
ning of its block, it calls the default constructor of the base ”linkedList” class
as above. For example, if ’T’ is the ”cell” class, then ”item” is a trivial cell
whose vertices lie at the origin and have ”sharingCells” fields that are equal to
1 and ”index” fields that are equal to −1. Fortunately, ”item” is declared as
mere ”protected” (rather than private) in the base ”linkedList” class. There-
fore, it is accessible from the derived ”mesh” class as well, and can be set
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here by the assignment operator of the ’T’ class to have the same value as the
argument ’e’.

For example, if ’T’ is the ”cell” class, then the assignment operator in
Section 21.7 is invoked to decrement the ”sharingCells” fields in the vertices
of ”item” from 1 to 0 and remove the trivial nodes in these vertices. Then,
the vertices of ”item” are assigned with the addresses in the corresponding
vertices in ’e’, as required. This is also why ’e’ must be nonconstant: the
”sharingCells” fields in its vertices increase by 1 in this process.

mesh(T&e){
item = e;

} // constructor

Fortunately, the copy constructor, assignment operator, and destructor inher-
ited from the base ”linkedList” class work just fine, so they don’t have to be
rewritten here.

The member functions declared below will be defined explicitly later on.

int indexing();

int indexingCells();

void refineNeighbor(node<point>&,
node<point>&,node<point>&);

void refineNeighbors(node<point3>&,
node<point3>&, node<point3>&);

void refine();
};

This completes the block of the ”mesh” class. Next, we define some of the
member functions that were only declared in the class block above.

21.11 Indexing the Nodes

Assume that the template parameter ’T’ in the ”mesh” is specified to be
the ”cell” class. The following member function of the ”mesh” class assigns
indices to the nodes in the mesh:

template<class T>
int mesh<T>::indexing(){
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The following loop scans the cells in the mesh (or the items inherited from the
base ”linkedList” class) and sets the indices of their vertices to the dummy
value −1 by invoking the public ”resetIndices()” member function of the ”cell”
class:

for(mesh<T>* runner = this;
runner; runner=(mesh<T>*)runner->next)

runner->item.resetIndices();

In this loop, the cells in the mesh are scanned by the pointer-to-mesh ”runner”,
which is advanced time and again to the address of the next item in the un-
derlying linked list. Indeed, this address is stored in the pointer ”next”, which
is declared as mere ”protected” (rather than private) in the base ”linkedList”
class, which makes it accessible from the derived ”mesh” class as well.

Unfortunately, ”next” is a mere pointer-to-linkedList rather than a pointer-
to-mesh. This is why it must be converted explicitly to type pointer-to-mesh
before it can be assigned to ”runner”, as is indeed indicated by the prefix
”(mesh<T>*)”.

Once the indices of all the nodes in the mesh have been set to −1, yet
another loop is used to index the nodes properly. Indeed, to each cell en-
countered in this loop, the ”indexing()” member function of the ”cell” class
(Section 21.5) is invoked to index its (yet unindexed) vertices:

int count=0;
for(mesh<T>* runner = this;

runner; runner=(mesh<T>*)runner->next)
runner->item.indexing(count);

Furthermore, the ”indexing()” member function of the ”cell” class also in-
creases its argument, ”count”, by the number of vertices indexed by it. Thus,
at the end of the above loop, all the nodes in the mesh have been indexed, so
”count” is the total number of nodes in the entire mesh:

return count;
} // indexing the nodes in the mesh

21.12 An Example

In this example, we construct a mesh of three triangles. First, we use the
constructor of the ”node” class (Section 21.1) to construct the nodes ’a’, ’b’,
’c’, ’d’, and ’e’:

int main(){
node<point> a(point(1,1));
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node<point> b(point(2,2));
node<point> c(point(2,0));
node<point> d(point(3,1));
node<point> e(point(3,3));

Then, the nodes ’a’, ’b’, and ’c’ are used in the first constructor in Section
21.6 to construct the triangle ”t1”:

triangle t1(a,b,c);

Next, the nodes ’b’, ’c’, and ’d’ are used to form yet another triangle, ”t2”.
However, ’b’ has already been copied to the second vertex of ”t1”, as in the
first constructor in Section 21.6. It is this copy (rather than the original node
’b’, which is only a dangling node that belongs to no cell) that should be used
as the first vertex in ”t2”.

There are two possible ways to refer to the second vertex in ”t1”: ”t1(1)”
invokes the ”operator()” member function of the ”cell” class (Section 21.5) to
return a nonconstant reference to the second vertex in ”t1”, whereas ”t1[1]”
invokes ”operator[]” to return a constant reference. Here, since the construc-
tor of the ”cell” class in Section 21.6 increases the ”sharingCells” field in
its ”node” arguments, ”t1(1)” must be used rather than ”t1[1]”. This way,
when ”t2” is constructed below, the ”sharingCells” field in the ”node” object
pointed at by ”t1(1)” can indeed increase from 1 to 2, as required.

Similarly, ”t1(2)” (the third vertex in ”t1”) is used instead of the original
node ’c’ to form the new triangle ”t2”:

triangle t2(t1(1),t1(2),d);

This way, the vertices of ”t2” are indeed copies of ’b’, ’c’, and ’d’, as required.
In fact, the copy of ’b’ in the mesh can now also be referred to as the first

vertex of ”t2”, or ”t2(0)”, and the copy of ’d’ in the mesh can now also be
referred to as the third vertex in ”t2”, or ”t2(2)”. These nonconstant references
are now used to form yet another triangle, ”t3”, vertexed at ’b’, ’d’, and ’e’:

triangle t3(t2(0),t2(2),e);

Next, the second constructor in Section 21.10 is used to construct a mesh ’m’
with one triangle only (namely, ”t1”) in it:

mesh<triangle> m(t1);

Furthermore, the ”append()” function inherited from the base ”linkedList”
class (Chapter 17, Section 17.6) is now used to append ”t2” to ’m’ as well.
In fact, this call invokes the constructor of the base ”linkedList” class (Chap-
ter 17, Section 17.3) to form the tail of ’m’ with the only item ”t2” in it.
This constructor invokes in turn the copy constructor of the ”cell” class in
Section 21.6, which creates no physical node, but only increments by 1 the
”sharingCells” fields in the vertices of ”t2”:
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m.append(t2);

Similarly, ”t3” is appended to ’m’ as well:

m.append(t3);

Once ”t1” has been assigned to the first cell in ’m’, it has completed its job
and can be removed by the destructor of the ”cell” class at the end of Section
21.7. In fact, this destructor removes no physical node, but only decrements
by 1 the ”sharingCells” fields in the vertices of ”t1”:

t1.~triangle();

Similarly, once ”t2” and ”t3” have been appended to ’m’, they can be removed
as well:

t2.~triangle();
t3.~triangle();

Furthermore, the nodes in ’m’ are indexed:

m.indexing();

Finally, ’m’ is printed onto the screen, using the ”print()” function (Chapter
17, end of Section 17.9) applied to the underlying linked list:

print(m);
return 0;

}

21.13 Indexing the Cells

Here is the definition of the ”indexingCells” member function that assigns
indices to the individual cells in the mesh, and returns the total number of
cells in the entire mesh:

template<class T>
int mesh<T>::indexingCells(){
int count=0;

The indexing is done by scanning the cells in the mesh by the pointer-to-mesh
named ”runner”. Indeed, ”runner” jumps from item to item in the linked list
that contains the cells in the mesh.

for(mesh<T>* runner = this; runner;
runner = (mesh<T>*)runner->next)
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To make ”runner” jump to the next item, it is assigned the address in the
”next” field in the loop above header. However, since ”next” is inherited
from the base ”linkedList” class, it is of type pointer-to-linked-list rather than
pointer-to-mesh; therefore, ”next” must be converted explicitly into pointer-
to-mesh before being assigned to ”runner”, as is indeed indicated by the prefix
”mesh<T>*” in the loop header.

In the body of the loop, the cell pointed at by ”runner” is assigned a suc-
cessively increasing index, using the ”setIndex” member function of the ”cell”
class:

runner->item.setIndex(count++);

Finally, the function also returns the total number of cells in the mesh:

return count;
} // indexing the cells

Once the user calls this function, the cells in the mesh take their indices in
the same order in which they are ordered in the underlying linked list. This
indexing scheme is used later on to assign colors to the cells.

21.14 Exercises

1. In what sense is the cell object nonstandard?
2. In what way are its constructors and destructor nonstandard?
3. What is the risk in this practice?
4. How can one protect oneself from these risks?
5. What field in the node object may change when it is passed as an argument

to the constructor in the ”cell” class?
6. Why isn’t the node argument that is passed to the constructor in the

”cell” class declared as constant?
7. Can a temporary unnamed node object be passed as an argument to the

constructor of the cell object? Why?
8. Why isn’t the cell argument that is passed to the constructor in the ”mesh”

class declared as constant?
9. Can a temporary unnamed cell object be passed as an argument to the

constructor of a mesh object? Why?
10. Why isn’t the ’T’ argument that is passed to the constructor in the base

”linkedList” template class in Chapter 17, Section 17.3, declared as con-
stant?

11. Why isn’t the ’T’ argument that is passed to the ”append” member func-
tion in the base ”linkedList” class in Chapter 17, Section 17.3, declared
as constant?
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Triangulation

The triangulation introduced in Chapter 11, Section 11.8, is a special kind of
graph. As discussed above, a graph is defined in terms of nodes and edges.
In a general graph, the nodes and edges are purely abstract objects, with no
geometrical meaning whatsoever. In a triangulation, on the other hand, they
also have a concrete geometrical interpretation as points and line segments in
the Cartesian plane.

The triangles in the triangulation are even more abstract and less concrete
than the nodes and edges. Indeed, they are never used in the original definition
of the graph. In fact, they are only used indirectly in the axioms required in
a triangulation.

The abstract nature of the triangles is apparent not only from the math-
ematical formulation but also from the object-oriented implementation. In-
deed, once the nodes have been defined and stored in the memory of the
computer as points in the Cartesian plane R2, the triangles don’t have to be
stored any more. Indeed, a triangle only has to ”know” (or has access to) its
vertices. This is why a triangle is implemented as a list of three pointers-to-
nodes rather than three nodes. This way, a node can be shared (or pointed
at) by more than one triangle, as is often the case in a triangulation.

The present framework can thus be summarized as follows: in the imple-
mentation of the triangulation, the triangles are more abstract than the nodes.
Indeed, the definition of the triangle object uses pointer fields only, whereas
the definition of the node object uses concrete data fields to store its x and y
coordinates in the Cartesian plane.

This kind of implementation is no surprise: after all, the triangles are only
implicitly defined by the axioms listed in Chapter 11, Section 11.8. It is thus
only natural to implement them as virtual objects that only refer to existing
nodes but contain no concrete nodes.

The present approach is a nice example to show how the actual implementa-
tion agrees with the original mathematical background to decide on the proper
level of abstraction suitable for a particular object. Indeed, because the tri-
angle is defined only implicitly in terms of the axioms in Chapter 11, Section
11.8, it is also implemented only virtually with pointers-to-nodes rather than
physical nodes.

Although we focus here on a two-dimensional triangulation, the discussion
extends most naturally to a more general mesh of cells (including the three-
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dimensional mesh of tetrahedra implemented at the end of this book), defined
in Chapter 11, last exercise. Indeed, although this coloring code below is
applied here to a two-dimensional triangulation only, it is written in terms of
a general mesh of cells, so that it is as general as possible.

Since the triangulation is just a special kind of a graph, it makes sense to
form the sparse matrix that represents this graph. This matrix formulation
can then be used to color not only the cells but also the nodes and the edges
in the triangulation.

22.1 Triangulation of a Domain

The triangulation is a particularly useful tool to approximate a two-
dimensional domain with a curved boundary, such as the unit circle. Indeed,
one may use rather big triangles in the middle of the domain, and smaller
and smaller triangles next to the curved boundary. Still, one must be careful
to preserve conformity by following the axioms in Chapter 11, Section 11.8.
This is done best by the iterative refinement method discussed below.

22.2 Multilevel Iterative Mesh Refinement

In multilevel iterative refinement [20] [21], one starts with a coarse mesh
that approximates the domain poorly. In the present application, for example,
the unit circle is initially approximated by a coarse mesh with two triangles
only. In the next iteration (refinement step), the mesh is refined by dividing
each triangle into two subtriangles. This is done by connecting the midpoint
of one of the edges to the vertex that lies across from it. If there exists a
neighbor triangle that also shares this edge, then it is also divided in the same
way by connecting this midpoint to the vertex that lies across from it in this
triangle as well. This way, conformity is preserved, as required in the axioms
in Chapter 11, Section 11.8.

If, on the other hand, there is no neighbor triangle on the other side of
this edge, then it must be a boundary edge (an edge that lies next to the
boundary). In this case, two small triangles are introduced between the divided
edge and the boundary, to yield a yet better approximation to the curved
boundary. Once all the triangles in the original coarse mesh have been divided,
the refinement step is complete, and the refined mesh is ready for the next
iteration (or the next refinement step).

Clearly, the mesh produced from the above refinement step approximates
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the original domain better than the original coarse mesh. Furthermore, it
can now serve as a coarse mesh in yet another refinement step, to produce a
yet better approximation to the original domain. By repeating this process
iteratively, one can produce finer and finer triangulations that approximate
the original domain better and better.

Let us now turn to the actual implementation of a refinement step.

22.3 Dividing a Triangle and its Neighbor

The ”refineNeighbor” member function of the ”mesh” class takes three
”node” arguments to represent nI, nJ, and nIJ in Figure 22.1, and uses them
to search, find, and divide the adjacent (neighbor) triangle as well.

Thanks to the fact that the concrete ”node” arguments (including the mid-
point nIJ) already serve as vertices in well-defined triangles in the mesh, they
can also be used to divide the neighbor triangle into two subtriangles. This
is also why they must be passed by nonconstant reference (or reference-to-
nonconstant-node), so that their ”sharingCells” fields could change when the
neighbor triangle is divided.

To find the neighbor triangle, we use the ’<’ operator in Chapter 21, Section
21.8, which checks whether a given node is indeed a vertex in a given triangle.
If it is, then this operator returns the index of this node in the list of vertices of
this triangle plus one (so the output is either one or two or three). Otherwise,
it returns zero.

The ’<’ operator is called twice for each triangle to check whether both nI
and nJ serve as vertices in it. If they do, then it must indeed be the required
neighbor triangle. The third vertex in it is then located by a straightforward
elimination process: after all, it is the only vertex in the neighbor triangle that
is different from both nI and nJ. The neighbor triangle is then replaced by
two subtriangles, denoted by ”t1” and ”t2”.

To find the neighbor triangle, the recursive structure of the mesh object
(which is actually a linked list of triangles) is particularly helpful: if the first
triangle in the mesh (or the first item in the underlying linked list of trian-
gles) isn’t the required neighbor triangle, then the ”refineNeighbor” function
is called recursively to look for the neighbor triangle among the rest of the
triangles in the mesh. For this purpose, the ”refineNeighbor” function is ap-
plied recursively to the “tail” of the original (current) mesh, pointed at by
the ”next” pointer.

Fortunately, both ”item” (the first cell in the mesh) and ”next” (the pointer
to the tail of the mesh) are declared as mere ”protected” (rather than private)
members of the base ”linkedList” class in Chapter 17, Section 17.3. Therefore,
both can be accessed from the derived ”mesh” class as well.
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FIGURE 22.1: The coarse triangle vertexed at A, nI, and nJ [see (a)] is
divided into two smaller triangles by the new line leading from A to nIJ [see (b)].
Furthermore, its neighbor triangle on the upper right is also divided by a new line

leading from nIJ to B [see (c)].
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Unfortunately, the ”next” field is inherited from the base ”linkedList” class
as a mere pointer-to-linkedList rather than a pointer-to-mesh. Therefore,
it must first be converted explicitly into a pointer-to-mesh before the ”re-
fineNeighbor” function can be applied recursively to it.

Usually, this would be considered as a risky practice, because in theory
”next” could point to a ”linkedList” object or to any other object derived
from the ”linkedList” class, which might have a completely different version
of a ”refineNeighbor” function that might do completely different things. For-
tunately, here ”next” must point to a ”mesh” object as well, so the recursive
call is safe.

void mesh<triangle>::refineNeighbor(node<point>&nI,
node<point>&nJ, node<point>&nIJ){

int ni = nI < item;
int nj = nJ < item;

Here, the arguments ”nI” and ”nJ” are the node objects corresponding to the
endpoints nI and nJ in Figure 22.1, respectively. If both nI and nJ are indeed
vertices in the first triangle in the mesh, ”item”, then the integers ”ni” and
”nj” are the corresponding indices of nI and nJ in the list of vertices in ”item”
plus 1. These integers are now used to identify the third vertex in ”item”:

if(ni&&nj){

If ”item” is indeed the required neighbor triangle that shares both nI and nJ
as its own vertices, then all that is left to do is to identify the third vertex in it
and divide it into two subtriangles. This is done as follows. First, we identify
the integer ”nk”, the index of the third vertex in the list of vertices in ”item”:

ni--;
nj--;
int nk = 0;
while((nk==ni)||(nk==nj))
nk++;

Next, ”nk” is used to form two subtriangles ”t1” and ”t2” to replace the
original neighbor triangle ”item”:

triangle t1(nI,nIJ,item(nk));
triangle t2(nJ,nIJ,item(nk));
insertNextItem(t2);
insertNextItem(t1);
dropFirstItem();

}
else{

If, on the other hand, ”item” is not the required neighbor triangle, then the
”refineNeighbor” function is applied recursively to the remaining triangles
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in the mesh to search for the required neighbor triangle. For this, however,
the ”next” field must first be converted explicitly from a mere pointer-to-
linkedList into a pointer-to-mesh:

if(next)
((mesh<triangle>*)next)->refineNeighbor(nI,nJ,nIJ);

If, however, we have reached the innermost recursive call that is applied to
the trivial linked list that contains only the last triangle in the mesh, then it
is clear that there is no neighbor triangle, so the edge that leads from nI to
nJ must be a boundary edge. In this case, two extra triangles, which are also
vertexed at nIJ and at the boundary point nIJ/‖nIJ‖, are added to the mesh:

else{
node<point>
newNode((1./sqrt(squaredNorm(nIJ()))) * nIJ());

triangle t1(nI,nIJ,newNode);
triangle t2(nJ,nIJ,t1(2));
insertNextItem(t2);
insertNextItem(t1);

}
}

} // refine also the neighbor of a refined triangle

This final ”else” block deals with the case in which no neighbor triangle has
been found in the entire mesh. In this case, the edge leading from nI to nJ
must be a boundary edge, that is, an edge that lies next to the boundary of
the domain approximated by the triangulation. Thus, in order to improve the
approximation, one needs to add two more triangles to the mesh, between
this boundary edge and the boundary of the domain: one triangle vertexed at
nI, nIJ, and the point ”newNode” that lies on the boundary, and the other
triangle vertexed at nJ, nIJ, and ”newNode”. In the above code, it is assumed
that the domain approximated by the triangulation is the unit circle, so a
natural choice for ”newNode” is

newNode =
nIJ
‖nIJ‖2

.

22.4 Refining the Mesh

Here we define the member function ”refine()” of the ”mesh” class that
applies one refinement step to the mesh by dividing the triangles in it, along
with their neighbors. Because the mesh object is actually a linked list of
triangles, it is only natural to use recursion for this purpose: first, the first
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triangle in the mesh (the first item in the underlying linked list), ”item”, is
divided into two subtriangles: ”t1”, with vertices A, nIJ, and nI, and ”t2”,
with vertices A, nIJ, and nJ, as in Figure 22.1. The ”refineNeighbor” function
is then called to divide the neighbor triangle as well, if exists. The first triangle,
”item”, is then replaced by the two subtriangles ”t1” and ”t2”.

The ”refine()” function is then called recursively to divide the rest of the
triangles in the tail of the original (current) mesh as well. In particular, this
recursive call may also divide the edge leading from A to nI in ”t1” or the
edge leading from A to nJ in ”t2”.

The new edges that emerge from nIJ, on the other hand, are not divided in
”refine()” any more. This is guaranteed by the ”index” field in the new node
nIJ, which is assigned the dummy value −1, and is therefore excluded from
any further dividing in the present refinement step.

The vertices in each triangle ’t’ in the mesh can be accessed by ”t(0)”,
”t(1)”, and ”t(2)”. This access method uses the ”operator()” (rather than
the ”operator[]”) of the ”cell” class that returns a nonconstant (rather than
constant) reference-to-node, because the ”sharingCells” fields in the nodes
may change in the refinement step.

void mesh<triangle>::refine(){
for(int i=0; i<3; i++)
for(int j=2; j>i; j--)
if((item[i].getIndex() >= 0)
&&(item[j].getIndex() >= 0)){

We are now in the beginning of a nested loop over the vertices in the first
triangle in the mesh, ”item”. By now, we have found a pair of distinct vertices
of ”item”, indexed by ’i’ and ’j’, which are connected by an edge that has not
yet been divided in the present refinement step. Indeed, these vertices have
nonnegative ”index” fields, which indicates that they are old vertices that
have existed even before the beginning of the present refinement step. Thus,
we proceed to define the midpoint of this edge:

node<point> itemij = (item[i]()+item[j]())/2.;

Here we apply the ”operator()” of the ”node” class to the nodes ”item[i]” and
”item[j]” to have their locations in the Cartesian plane, namely, the 2-d points
nI and nJ. The point that lies in between nI and nJ, nIJ, is then converted
implicitly into the required node object ”itemij”.

Furthermore, we can now find the third vertex in the triangle, indexed by
’k’:

int k=0;
while((k==i)||(k==j))
k++;

These points are now used to construct the two halves of the triangle ”item”:
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triangle t1(item(i),itemij,item(k));
triangle t2(item(j),t1(1),item(k));

Note that, once the new node ”itemij” has been copied to the new triangle
”t1”, it must be referred to as ”t1(1)” (namely, the second node in the new
triangle ”t1”) rather than its original name ”itemij” which is just a dangling
node that belongs to no triangle. This way, when ”t1(1)” is used to construct
the second new triangle, ”t2”, its ”sharingCells” field increases to 2, as re-
quired.

The small new triangles ”t1” and ”t2” are now used to find the triangle
adjacent to ”item” and divide it as well:

if(next)
((mesh<triangle>*)next)->

refineNeighbor(item(i),item(j),t1(1));

Then, ”t1” and ”t2” are placed in the mesh instead of the original triangle
”item”:

insertNextItem(t2);
insertNextItem(t1);
dropFirstItem();

By now, we have divided the first triangle in the mesh and its neighbor. The
mesh has therefore changed, and new triangles have been introduced, which
need to be considered for refinement as well. Therefore, we have to call the
”refine()” function recursively here. This call can only divide edges that do
not use the new node ”itemij”, whose ”index” field is −1:

refine();
return;

}

Finally, if no edge that should be divided has been found in the first triangle
in the mesh, then the ”refine()” function is applied recursively to the rest of
the triangles in the mesh (contained in the ”next” variable), not before this
variable is converted explicitly from pointer-to-linkedList to pointer-to-mesh:

if(next)((mesh<triangle>*)next)->refine();
} // refinement step

22.5 Approximating a Circle

In this example, the above function is used to form a triangulation to ap-
proximate the unit circle. First, a coarse triangulation that provides a poor
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approximation is constructed as in Figure 22.2, using two triangles only: the
upper triangle ”t1” [vertexed at (1, 0), (0, 1), and (−1, 0)], and the lower tri-
angle ”t2” [vertexed at (−1, 0), (0,−1), and (1, 0)]. (Note that the vertices in
each triangle are ordered counterclockwise, as in the positive mathematical
direction.)
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FIGURE 22.2: The coarse triangulation that approximates the unit circle
poorly.

These triangles are constructed by the first constructor in Chapter 21, Sec-
tion 21.6, which takes three ”node” arguments. However, since this constructor
may change the ”sharingCells” fields of its arguments, it cannot take tempo-
rary objects, because it makes little sense to change them, so the compiler
assumes that this must be a human error and refuses to accept this. This is
why the user must define the nodes properly as permanent variables (’a’, ’b’,
’c’, and ’d’ below) before they are passed to the ”cell” constructor to construct
”t1” and ”t2”:

int main(){
node<point> a(point(1,0));
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FIGURE 22.3: The finer triangulation obtained from one refinement step
applied to the original coarse triangulation above. The nodes are indexed from 0 to

12 by the ”indexing()” function.

node<point> b(point(0,1));
node<point> c(point(-1,0));
node<point> d(point(0,-1));
triangle t1(a,b,c);
triangle t2(t1(2),d,t1(0));

(See Chapter 21, Section 21.12, for more explanations.)
The coarse triangulation ’m’ that contains ”t1” and ”t2” is now formed

by the second constructor in Chapter 21, Section 21.10, and the ”append()”
function inherited from the base ”linkedList” class:

mesh<triangle> m(t1);
m.append(t2);

Once the original (coarse) triangles ”t1” and ”t2” have been copied into the
mesh ’m’, they have completed their job and can be removed:
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FIGURE 22.4: The triangles are indexed from 0 to 15, by the ”indexingCells”
function, in the order in which they appear in the underlying linked list.

t1.~triangle();
t2.~triangle();

One refinement step is now applied to ’m’:

m.indexing();
m.refine();

The improved mesh (with nodes indexed as in Figure 22.3) can now be printed
onto the screen:

m.indexing();
print(m);
return 0;

}

The order in which the fine triangles are created in the mesh is displayed in
Figure 22.4. This order has some effect on the coloring of the triangles below.
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22.6 The Cell-Coloring Code

Here we implement the triangle-coloring algorithm in Chapter 11, Section
11.9 above. Actually, the algorithm is implemented in a more general way, so
it can be used to color not only triangles but also any kind of cell in a mesh.

For this purpose, the function ”colorCells” below is defined as a template
function, with the yet unspecified type ’T’ standing for the type of cell in
the mesh. This way, the function can be called by any user not only for a
mesh of triangles, in which case ’T’ takes the ”triangle” type, but also for any
kind of mesh in the Cartesian plane, such as mesh of squares or even more
complicated geometrical shapes.

The function returns a vector (named ”colors”) whose dimension (number
of components) is the same as the number of cells in the mesh. This number
is returned by the function ”indexingCells” applied to the mesh:

template<class T>
const dynamicVector<int>
colorCells(mesh<T>&m){
int colorsNumber = 0;
dynamicVector<int> colors(m.indexingCells(),-1);

The coloring of the cells is done by a double nested loop on the cells in
the mesh. In the outer loop, the cells are scanned by the pointer-to-mesh
”runner”, and in the inner loop, they are scanned again by the pointer-to-
mesh ”neighbor”. Both ”runner” and ”neighbor” are advanced from cell to
cell using the ”readNext” member function of the base ”linkedList” class.
However, since this function returns a pointer to linked list, they must be
converted explicitly to type pointer to mesh:

for(const mesh<T>* runner = &m; runner;
runner=(const mesh<T>*)runner->readNext()){

dynamicVector<int> usedColors(colorsNumber,0);
for(const mesh<T>* neighbor = &m;

neighbor&&(neighbor != runner);
neighbor=(const mesh<T>*)neighbor->readNext())

The cells pointed at by ”runner” and ”neighbor” can be obtained by invoking
the ”operator()” member function of the base ”linkedList” class, which returns
the first item in a linked list. In the body of the inner loop, it is checked
whether these cells share an edge by invoking the ”operator&” function:

if((*neighbor)() & (*runner)())
usedColors(colors[(*neighbor)().getIndex()]) = 1;

The colors that have been used to color any cell that shares an edge with
the cell pointed at by ”runner” are now excluded from the potential colors to
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color this cell. The color that is chosen to color this cell is the one that has
never been used to color its neighbors. If, however, no such color is available,
then a new color must be introduced, and the total number of colors must
increase by 1:

int availableColor = firstZero(usedColors);
colors((*runner)().getIndex()) =

availableColor<usedColors.dim() ?
availableColor : colorsNumber++;

}
return colors;

} // color cells

This completes the proper coloring of the cells in the mesh. The user can now
color a triangulation by applying the above function to a mesh of triangles:
For example, adding the command

print(colorCells(m));

at the end of the ”main()” function in the previous section produces the
coloring in Figure 22.5, which uses three colors to color sixteen triangles. This
is a suboptimal number of colors: indeed two colors would be sufficient if the
triangles were ordered counter-clockwise rather than in the order in Figure
22.4. Still, three colors is a moderate number of colors, as can be expected
from the triangle-coloring algorithm.

22.7 The Matrix Formulation

Here we implement the constructor that takes a triangulation as an argu-
ment, and produces the sparse matrix associated with it, namely, the sym-
metric sparse matrix A whose element ai,j is nonzero if and only if the nodes
indexed by i and j are connected by an edge in the triangulation:

template<class T>
sparseMatrix<T>::sparseMatrix(mesh<triangle>&m){
item = new row<T>*[number = m.indexing()];

This code line allocates memory for the field ”item” inherited from the base
”list” class. Indeed, in the derived ”sparseMatrix” class, this field is actually
an array of pointers-to-rows. The number of rows (or the number of items in
the underlying list) is the same as the number of nodes in the triangulation,
returned by the ”indexing()” function.

Initially, the pointers-to-rows in the list are initialized with the trivial zero
value, that is, they point to nothing:
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FIGURE 22.5: The coloring produced by the triangle-coloring code uses three
colors to color the fine triangulation. A better coloring, which uses two colors only,

would result from the code if the triangles had been ordered counter-clockwise.

for(int i=0; i<number; i++)
item[i] = 0;

In order to give the rows meaningful values, the triangles in the mesh ’m’ are
scanned in the following loop:

for(const mesh<triangle>* runner = &m; runner;
runner=(const mesh<triangle>*)runner->readNext()){

The pointer-to-mesh ”runner” used in this loop is advanced by using the
”readNext” member function of the base ”linkedList” class. However, since
this function returns a pointer to linked list, it must be converted explicitly
into a pointer to mesh. The first cell in the mesh pointed at by ”runner” can
now be obtained by invoking the ”operator()” member function of the base
”linkedList” class. Furthermore, the individual nodes in the cell can be referred
to by invoking the ”operator[]” member function in the ”cell” class. Moreover,
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the index of each such node in the list of nodes in the triangulation can also
be obtained by the ”getIndex” member function of the ”node” class. Thanks
to these properties, one can now carry out a double loop on the vertices in
each cell to define a nonzero element aI,J in the matrix A, where ’I’ and ’J ’
are the indices associated with these vertices:

for(int i=0; i<3; i++){
int I = (*runner)()[i].getIndex();
for(int j=0; j<3; j++){
int J = (*runner)()[j].getIndex();

This way, the vertices indexed by ’i’ and ’j’ in the individual cell pointed at
by ”runner” are also indexed by the global indices ’I’ and ’J’ in the global list
of nodes in the entire mesh.

These global indices are now used to give the corresponding matrix el-
ement aI,J a nonzero value, as required. For this, however, we first need
to check whether the ’I’th row in the current sparse matrix has already
been constructed. If it has, then the ”+=” operator inherited from the base
”linkedList” class should be used to add the nonzero element aI,J to it; oth-
erwise, the ”new” command should be used instead:

if(item[I]){
row<T> r(1,J);
*item[I] += r;

}
else
item[I] = new row<T>(1,J);

}
}

}
} // the matrix of the triangulation

This completes the constructor of the matrix associated with the graph of the
triangulation. (As a matter of fact, the above function can be easily extended
to apply not only to a triangulation but also to a more general mesh of cells
of any shape.) Furthermore, once the symmetric matrix has been constructed,
one can apply to it the ”colorNodes” and ”colorEdges” functions to color the
nodes and the edges in the nonoriented graph of the triangulation.

22.8 The Code-Size Rule

Object-oriented programming is particularly useful to limit the amount of
code required in advanced applications. Roughly speaking, with no object-
oriented programming, the code size may grow exponentially as the problem
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becomes more and more complicated, whereas with object-oriented program-
ming it grows only linearly.

Indeed, assume that we already have a code that works well for some par-
ticular case (for example, the above code that works well for a triangulation),
and we need to generalize it to apply to a yet more complicated case as well
(for example, to a 3-D mesh of tetrahedra as in the next chapter). If our orig-
inal code were not an object-oriented code, then we would have to modify
each and every function in it to apply to the more advanced (3-D rather than
2-D) case as well. This would no doubt require more code (as well as more
programming work) in each function, increasing the total code size (as well
as the total programming time) by a constant factor greater than one.

Fortunately, our code is indeed an object-oriented code. Therefore, all that
is required is to implement properly the more general objects, along with their
own functions (for example, the 3-D mesh of tetrahedra and its own refinement
functions below). With these new objects, the original algorithm is still well-
implemented in the original code, with at most some minor adjustments.

Thus, with object-oriented programming, one only needs to add to the orig-
inal code a fixed amount of new code to implement the new objects required
in the more general (and complicated) case. Thus, the total code size (as well
as the total amount of programming work) increases only linearly as the prob-
lem is written in more and more general terms, to apply to more and more
difficult cases.

22.9 Exercises

1. Explain why the node object, defined in terms of its concrete location in
the Cartesian plane, is less abstract than the triangle object, defined as a
list of three pointers-to-nodes.

2. How does the high level of abstraction of the triangle object in its actual
implementation agrees with its original mathematical definition, which
only follows from the axioms in Chapter 11, Section 11.8?

3. Why must the pointer ”runner” used in the above loops be converted
explicitly from type pointer-to-linked-list to type pointer-to-mesh?

4. A user defines the nodes ’a’, ’b’, and ’c’ in a code. Can these names
be passed to the constructor in the ”cell” class to form the triangle
”t1(a,b,c)”? Can any of these nodes, say ’a’, be passed once again to con-
struct yet another triangle, say ”t2”, intended to be placed in the same
mesh? Why must the user refer to ’a’ as ”t1(0)” rather than by its original
name ’a’? (Hint: what happens to the value of the ”sharingCells” field in
the node when it is passed as an argument to the cell constructor?)

5. Apply the ”refine” function to the above triangulation of the unit circle
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to obtain a yet finer and more accurate triangulation.
6. Color the above triangulation by the cell-coloring code. How many colors

are used? Why must the number of colors be at most four?
7. Use the above code to obtain the matrix formulation of the graph of the

above triangulation.
8. Check that the above matrix is indeed symmetric.
9. Apply to the above matrix the node-coloring code for nonoriented graphs

in Chapter 20, Section 20.15 to obtain the coloring of the nodes in the
above triangulation. How many colors are used?

10. Apply to the above matrix the edge-coloring code of nonoriented graphs
in Chapter 20, Section 20.16 to obtain the coloring of the edges in the
above triangulation. How many colors are used?
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Three-Dimensional Applications
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Three-Dimensional Applications

In this part, we extend the above mesh of triangles (or triangulation) into its
three-dimensional counter-part: a mesh of tetrahedra. For this complicated
mesh, we implement an iterative refinement algorithm, in which each tetrahe-
dron is refined along with its neighbor (edge-sharing) tetrahedra, to preserve
conformity.

Furthermore, we define 1-d, 2-d, and 3-d polynomial objects, along with
their arithmetic operations, composition, and integration. Moreover, we also
implement efficiently sparse polynomials, which may contain a lot of zero
coefficients.

Finally, the three-dimensional mesh of tetrahedra, along with the three-
dimensional polynomials, is used to form the stiffness and mass matrices,
which are often used in practical applications in computational physics and
engineering.
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Chapter 23

Mesh of Tetrahedra

The mesh implemented in this chapter may be viewed as a generalization of
the mesh implemented in the previous chapter to three spatial dimensions.
Indeed, it is implemented as a linked list of tetrahedra, each of which may
be viewed as the three-dimensional generalization of a triangle. Furthermore,
the iterative refinement process preserves conformity: once a particular tetra-
hedron is refined by dividing one of its edges and connecting its midpoint to
the corner that lies across from it to form two subtetrahedra, all the neighbor
tetrahedra that share this edge are also refined in the same way, using the
midpoint as a new corner in the new subtetrahedra.

In the following, we’ll see the detailed code that realizes this procedure to
produce the fine conformal mesh of tetrahedra.

23.1 The Mesh Refinement

The tetrahedron object defined in Chapter 21, Section 21.8, is actually a
cell in the three-dimensional Cartesian space, with four corners that form four
triangular sides. Once the template symbol ’T’ in the ”mesh” class is specified
to be the tetrahedron object, one obtains the required three-dimensional mesh,
implemented as a linked list of tetrahedra.

Usually, the original mesh is too coarse to approximate well the curved
three-dimensional domain under consideration. A refinement step is necessary
to produce a finer and more accurate mesh.

To make sure that the fine mesh is conformal as well, one must be careful
to refine not only each coarse tetrahedron but also its neighbors (edge sharing
tetrahedra). This way, the midpoint of the edge divided in the refinement step
serves not only as a corner in the two subtetrahedra of the original coarse
tetrahedron but also as a corner in all the subtetrahedra of the neighbor
tetrahedra, as required to preserve conformity. This is implemented next.

487
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23.2 Refining the Neighbor Tetrahedra

Suppose that we have decided to refine a particular tetrahedron in the mesh
by dividing one of its edges and connecting its midpoint to the corner that
lies across from it to form two subtetrahedra. Let us denote the two original
endpoints of this edge by ”nI” and ”nJ”, and its midpoint by ”nIJ”. These
nodes are passed as arguments to the ”refineNeighbors” function below to
search for any neighbor tetrahedra that also share this edge as their common
edge, and refine them accordingly to preserve conformity:

void mesh<tetrahedron>::
refineNeighbors(node<point3>&nI,
node<point3>&nJ, node<point3>&nIJ){

In the case of triangulation discussed in the previous chapter, there may be
at most one neighbor triangle to refine. Here, on the other hand, there may
be several neighbor tetrahedra that share the edge leading from ”nI” to ”nJ”.
All of these neighbor tetrahedra must be found and refined as well. To do this,
it makes more sense to scan the tetrahedra in the reversed order, from the
last tetrahedron backward. This way, once a neighbor tetrahedron has been
found and divided into two subtetrahedra, the scanning proceeds backward,
avoiding the need to scan these two new subtetrahedra that have just been
added to the linked list. This is why the recursive call is made in the beginning
of the function, to start dividing neighbor tetrahedra from the far end of the
underlying linked list:

if(next)
((mesh<tetrahedron>*)next)->

refineNeighbors(nI,nJ,nIJ);

(Note that the ”next” field is a mere pointer to a linked list of tetrahedra;
this is why it must be converted explicitly to a pointer to a mesh before the
recursive call can be made.)

Thus, the first thing that the ”refineNeighbors” function does is the recur-
sive call to search the “tail” of the linked list (which contains all the tetrahedra
but the first one) for potential neighbors. The first thing that this recursion
does is yet another recursion, and so on. Thus, the first thing that is actually
done in the entire recursive process is to examine the last tetrahedron in the
linked list and refine it if it is indeed a neighbor. Only then is the previous re-
cursive call actually executed to examine the previous tetrahedron and refine
it if appropriate, and so on, until the first tetrahedron is checked and refined
if necessary:

int ni = nI < item;
int nj = nJ < item;
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This is how the first tetrahedron, ”item”, is checked whether or not it is
a neighbor that shares the edge leading from ”nI” to ”nJ”: first, the ”<”
operator of Chapter 21, Section 21.8, is invoked to check whether ”nI” and
”nJ” are indeed nodes in ”item”. If they are, then this operator also returns
their indices in the list of nodes in ”item” plus one. This extra one can now
be subtracted to obtain the indices ”ni” and ’nj” of ”nI” and ”nJ” in the list
of nodes in ”item”:

if(ni&&nj){
ni--;
nj--;

Furthermore, the two other nodes in ”item” also have some indices ’nk’ and
’nl’ (that are different from ”ni” and ”nj”) in its list of nodes, which can be
found by simple loops:

int nk = 0;
while((nk==ni)||(nk==nj))
nk++;

int nl = 0;
while((nl==ni)||(nl==nj)||(nl==nk))
nl++;

These indices are now used to form the two subtetrahedra of ”item” ”t1” and
”t2”:

tetrahedron t1(nI,nIJ,item(nk),item(nl));
tetrahedron t2(nJ,nIJ,item(nk),item(nl));

These new tetrahedra are now added to the linked list instead of the original
neighbor tetrahedron ”item”:

insertNextItem(t2);
insertNextItem(t1);
dropFirstItem();

}
} // refine also the neighbor tetrahedra

This completes the function that refines also the neighbor tetrahedra that
share the edge leading from ”nI” to ”nJ”. In the sequel, we’ll see how this
function is used in the refinement step.

23.3 The Refinement Step

The following function implements the entire refinement step: it scans the
tetrahedra in the mesh one by one, and refines each of them by dividing one
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of its edges:

void mesh<tetrahedron>::refine(){
for(int i=0; i<4; i++)
for(int j=3; j>i; j--)

The integers ’i’ and ’j’ represent distinct indices of nodes in the first tetrahe-
dron, ”item”. The edge that connects these nodes is a good candidate for being
divided only if it is indeed an original edge that has never been divided be-
fore in the present refinement step, or if these nodes indeed have nonnegative
indices in the entire list of nodes in the entire mesh:

if((item[i].getIndex() >= 0)&&
(item[j].getIndex() >= 0)){

In this case, their midpoint, denoted by ”itemij”, is used to form the two
required subtetrahedra. For this purpose, however, we first need to find the
two other vertices in ”item”. More precisely, we must find a way to refer to
them by finding their indices ’k’ and ’l’ in the list of vertices in ”item”:

node<point3> itemij =
(item[i]()+item[j]())/2.;

int k=0;
while((k==i)||(k==j))
k++;

int l=0;
while((l==i)||(l==j)||(l==k))
l++;

The midpoint ”itemij”, as well as the indices ’k’ and ’l’ of the two other
vertices in ”item”, are now used to form the two subtetrahedra ”t1” and ”t2”:

tetrahedron t1(item(i),
itemij,item(k),item(l));

tetrahedron t2(item(j),
t1(1),item(k),item(l));

Note that, once ”itemij” has been used as a vertex in ”t1”, it is referred to
as ”t1(1)” (a legitimate node in the mesh) rather than by its original name
”itemij”, which stands for a dangling node that belongs to no cell.

Now, the ”refineNeighbors” function is called to refine not only ”item” but
also its neighbor tetrahedra that share the edge under consideration. Clearly,
such neighbors can be found only in the rest of the linked list of tetrahedra,
because all the previous ones have already been refined fully:

if(next)
((mesh<tetrahedron>*)next)->
refineNeighbors(item(i),item(j),t1(1));
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Note that the ”next” field is a mere pointer to a linked list of tetrahedra; this
is why it must be converted explicitly into a pointer to an actual mesh before
the ”refineNeighbors” function can be called.

The two new tetrahedra ”t1” and ”t2” can now be added to the linked list
instead of the original tetrahedron ”item”:

insertNextItem(t2);
insertNextItem(t1);
dropFirstItem();

Once ”item” has been divided successfully and replaced by its two subtetra-
hedra ”t1” and ”t2”, the rest of the tetrahedra in the linked list (new as well
as old) are also refined by a recursive call to the ”refine” function:

refine();
return;

}

This recursive call actually replaces the original call; indeed, the ”return”
commands that follows it closes the original call, leaving only the recursive
call active. This recursive call continues to refine the up-to-date linked list of
tetrahedra, starting from ”t1”, ”t2”, etc.

Although ”t1” and ”t2” have one edge that cannot be divided any more
in this refinement step (because it has just been produced as one half of an
original edge), they may still have old (original) edges that may still be divided
in the present refinement step. This is why the recursive call must consider
them as well.

Indeed, only original edges that belong to the original coarse mesh are
considered for being divided, thanks to the ”if” question in the beginning of
the function that makes sure that their endpoints indeed have nonnegative
indices, to indicate that they indeed belong to the original coarse mesh.

If, on the other hand, no more original edges have been found in ”item”,
then it cannot be divided any more. In this case, the recursive call to the
”refine” function is made from the next tetrahedron in the linked list:

if(next)
((mesh<tetrahedron>*)next)->refine();

} // adaptive refinement

This completes the refinement step to produce the finer mesh of tetrahedra.

23.4 Exercises

1. Write the unit cube
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[0, 1]× [0, 1]× [0, 1] = {(x, y, z) | 0 ≤ x, y, z ≤ 1}

as the union of six disjoint tetrahedra. Combine these tetrahedra to form
a complete mesh. The solution can be found in Section 28.15 in the ap-
pendix.

2. Apply the ”refine” function to the above mesh and print the resulting fine
mesh.

3. Apply the cell-coloring code to the above mesh of tetrahedra.
4. Write the constructor that produces the sparse matrix of the graph of the

three-dimensional mesh of tetrahedra (it is analogue to the constructor in
Chapter 22, Section 22.7).

5. Apply the above constructor to the above mesh of tetrahedra that covers
the unit cube.

6. Apply the edge-coloring code to the resulting sparse matrix.
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Chapter 24

Polynomials

In this chapter, we implement polynomials of the form

n∑
i=0

aix
i,

along with some useful arithmetic operations (Chapter 12). Because the type
of the independent variable x is unspecified, it is best denoted by the symbol
’T’ in a template class. This way, x can be specified later by the user to be
either a real or a complex variable.

Thus, in order to implement the polynomial, it is sufficient to store its
coefficients

a0, a1, a2, . . . , an.

The naive way to do this is in an (n + 1)-dimensional vector. This approach,
however, is not sufficiently general and flexible. Indeed, in a vector object,
the coefficients would actually be stored in an array, which requires that all of
them are of the same size. This is good enough for polynomials of one variable,
in which the coefficients are scalars, but not for polynomials of two or more
variables, in which the coefficients are themselves polynomials that may have
variable sizes.

A better way to implement the polynomial is, thus, as a list of coefficients.
Indeed, the major advantage of the list is that its items don’t have to be of
the same size. This provides the extra flexibility required in the polynomial
object implemented below.

24.1 The Polynomial Object

Here we implement the polynomial object as a list of objects of type ’T’,
to be specified later by the user:

template<class T> class polynomial:public list<T>{
public:
polynomial(int n=0){

493
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number = n;
item = n ? new T*[n] : 0;
for(int i=0; i<n; i++)
item[i] = 0;

} // constructor

Thanks to the fact that the fields ”number” and ”item” are declared as pro-
tected (rather than private) in the base ”list” class, they can be accessed also
from the derived ”polynomial” class. this property is used in the default con-
structor above. Indeed, after the ”number” and ”item” fields have been set to
zero by the default constructor of the base ”list” class invoked automatically
at the beginning of the above function, they are further updated to take more
meaningful values: ”number” takes the value ’n’ passed to the above function
as an argument, and, if ’n’ is nonzero, then ”item” is also constructed as an
array of ’n’ null pointers.

The next constructor is yet more specific: if ’n’ is nonzero, then it also fills
the array ”item” with pointers to some objects of type ’T’:

polynomial(int n, const T&a){
number = n;
item = n ? new T*[n] : 0;
for(int i=0; i<n; i++)
item[i] = new T(a);

} // constructor with ’T’ argument

This constructor uses the ”new” command and the copy constructor of the
’T’ class to loop on the array ”item” and initialize its components as pointers
to the same value, ’a’.

The next constructor assumes that n= 2; it fills the two components in
”item” with pointers to two prescribed objects, ’a’ and ’b’.

polynomial(const T&a, const T&b){
number = 2;
item = new T*[2];
item[0] = new T(a);
item[1] = new T(b);

} // constructor with 2 ’T’ arguments

The destructor needs to do nothing, because everything is done by the default
destructor of the base ”list” class, invoked implicitly at the end of the following
empty block:

~polynomial(){
} // destructor

The following function returns the degree of the polynomial, which is just the
number of coefficients minus one:
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int degree() const{
return number-1;

} // degree of polynomial

The next function allows the user to access the ’i’th coefficient in a polynomial
’p’ simply by writing ”p(i)”:

T& operator()(int i){
return list<T>::operator()(i);

} // read/write ith coefficient

Finally, we declare some more member functions, to be defined later in detail.
Note that the arguments passed to these functions are of type ’S’, which is
not necessarily the same as ’T’:

template<class S>
const T
HornerArray(T** const&, int, const S&) const;

template<class S>
const T operator()(const S&) const;

template<class S>
const S operator()(const S&, const S&) const;

template<class S>
const S operator()(const S&,

const S&, const S&) const;
};

This completes the block of the ”polynomial” class. Next, we define some
useful arithmetic operators with polynomials.

24.2 Adding Polynomials

The ”+ =” operator is implemented as an ordinary (nonmember) function,
which takes two polynomial arguments, and adds the second one to the first
one. This is why only the second one is declared as constant, whereas the first
one is not. With this operator, users who have defined two polynomials ’p’
and ’q’ may just write ”p+ =q” to add ’q’ to ’p’.

template<class T>
const polynomial<T>&
operator+=(polynomial<T>& p, const polynomial<T>&q){

If ’p’ is of a larger degree than ’q’, then the coefficients in ’q’ are added one
by one to the corresponding coefficients in ’p’:
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if(p.degree() >= q.degree())
for(int i=0; i<=q.degree(); i++)
p(i) += q[i];

If, on the other hand, ’q’ is of a larger degree than ’p’, then it cannot be
added to it by a straightforward loop. Instead, the ”+ =” operator must be
called recursively, with the roles of ’p’ and ’q’ interchanged. However, since
’q’ is a constant polynomial, we must first define a nonconstant polynomial,
”keepQ”, which is the same as ’q’. The recursive call to the ”+ =” operator
then adds ’p’ to ”keepQ”, and the result is not only placed in ’p’, as required,
but also returned as the output of the function:

else{
polynomial<T> keepQ = q;
p = keepQ += p;

}
return p;

} // add polynomial

The above function is now used to define a ’+’ operator:

template<class T>
const polynomial<T>
operator+(const polynomial<T>& p,

const polynomial<T>&q){
polynomial<T> keep = p;
return keep += q;

} // add two polynomials

24.3 Multiplication by a Scalar

Here we define ordinary (nonmember) operators to multiply a polynomial by
a scalar of type ’S’, to be specified later by the user. First, we define the ”*=”
operator, which multiplies its first argument, the nonconstant polynomial ’p’,
by its second argument, ’a’, an object of type ’S’:

template<class T, class S>
const polynomial<T>&
operator*=(polynomial<T>& p, const S&a){
for(int i=0; i<=p.degree(); i++)
p(i) *= a;

return p;
} // multiplication by scalar
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The ”*=” operator invoked in the above loop is interpreted to multiply an
object of type ’T’ by an object of type ’S’, whatever these types may be. Thus,
all the coefficients in ’p’ are multiplied one by one by ’a’, as required. With
the above function, users can write ”p *= d” to multiply a polynomial ’p’ by
a scalar ’d’ of any type.

The above function is now used to define scalar-times-polynomial and
polynomial-times-scalar multiplications:

template<class T, class S>
const polynomial<T>
operator*(const S&a, const polynomial<T>&p){
polynomial<T> keep = p;
return keep *= a;

} // scalar times polynomial

template<class T, class S>
const polynomial<T>
operator*(const polynomial<T>&p, const S&a){
polynomial<T> keep = p;
return keep *= a;

} // polynomial times scalar

With these functions, the user can write ”p * d” or ”d * p” to multiply a
polynomial ’p’ by a scalar ’d’ of any type.

24.4 Multiplying Polynomials

The above operators are now used to multiply two polynomials, in light of
the algorithm in Chapter 12, Section 12.3:

template<class T>
polynomial<T>
operator*(const polynomial<T>&p,

const polynomial<T>&q){

First, we define and initialize to zero the polynomial ”result”, which will
contain the required product of the polynomials ’p’ and ’q’:

polynomial<T>
result(p.degree()+q.degree()+1,0);

for(int i=0; i<=result.degree(); i++)

The outer loop uses the index ’i’ to form the ’i’th coefficient of ”result”. The
inner loop, on the other hand, uses the index ’j’ to obtain the ’i’th coefficient
in ”result” as a sum of products of coefficients in ’p’ and coefficients in ’q’:
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for(int j=max(0,i-q.degree());
j<=min(i,p.degree()); j++){

At the start of the inner loop, the ’i’th coefficient in ”result” doesn’t exist as
yet. This is why the ’=’ operator is used to initialize it:

if(j == max(0,i-q.degree()))
result(i) = p[j] * q[i-j];

In the rest of the inner loop, on the other hand, the ’i’th coefficient in ”result”
already exists and is already initialized. This is why the ”+ =” operator is
used to update it:

else
result(i) += p[j] * q[i-j];

}
return result;

} // multiply 2 polynomials

With this function, users can just write ”p * q” to obtain the product of the
polynomials ’p’ and ’q’.

The above ”operator*” is now used also to form the ”*=” operator, which
multiplies its first (nonconstant) polynomial argument by its second one:

template<class T>
polynomial<T>&
operator*=(polynomial<T>&p,

const polynomial<T>&q){
return p = p * q;

} // multiply by polynomial

With this function, users can write ”p *= q” to multiply the polynomial ’p’
by the polynomial ’q’.

24.5 Calculating a Polynomial

Here we use the algorithms in Chapter 12, Section 12.4, to calculate the
value p(x) of a given polynomial p at a given argument x. First, we implement
the naive algorithm, which calculates the powers xi (2 ≤ i ≤ n), multiplies
them by the corresponding coefficients ai, and sums up:

template<class T>
const T
calculatePolynomial(const polynomial<T>&p, const T&x){
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T powerOfX = 1;
T sum=0;
for(int i=0; i<=p.degree(); i++){
sum += p[i] * powerOfX;
powerOfX *= x;

}
return sum;

} // calculate a polynomial

Next, we implement the more efficient Horner algorithm. The recursion re-
quired in this algorithm is implemented in a loop:

template<class T>
const T
HornerLoop(const polynomial<T>&p, const T&x){
T result = p[p.degree()];
for(int i=p.degree(); i>0; i--){
result *= x;
result += p[i-1];

}
return result;

} // Horner algorithm to calculate a polynomial

24.6 Composition of Polynomials

Furthermore, the above code can be slightly modified to yield the composi-
tion p◦q of the given polynomials p and q, in light of the algorithm in Chapter
12, Section 12.5:

template<class T>
const polynomial<T>
operator&(const polynomial<T>&p,

const polynomial<T>&q){
polynomial<T> result(1,p[p.degree()]);
for(int i=p.degree(); i>0; i--){
result *= q;
result += polynomial<T>(1,p[i-1]);

}
return result;

} // Horner algorithm to compose p and q
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24.7 Recursive Horner Code

In the previous sections, Horner’s algorithm is implemented in a loop. This
way, one avoids the expensive construction of the polynomial p1 used in the
recursion in Chapter 12, Section 12.4. Here, however, we show how one can
stick to the original recursive formulation of Horner’s algorithm, and yet avoid
the explicit construction of p1. This is done by observing that p1 is already
available in the array of coefficients of p, provided that the first coefficient is
disregarded.

The function ”HornerArray” that implements the above idea is declared as
a member function of the ”polynomial” class to allow other member functions
to call it, which will prove useful below. Furthermore, the type of the argument
’x’ is declared as the template class ’S’, to be specified later by the user. This
provides extra flexibility, since ’S’ doesn’t have to be the same as ’T’.

template<class T>
template<class S>
const T
polynomial<T>::HornerArray(T** const&p,

int n, const S&x) const{
return n = =0 ?

*p[0]
:
*p[0] + x * HornerArray(p+1,n-1,x);

} // Horner algorithm for an array p

Here the first argument, ’p’, stands for the array of pointers-to-coefficients
in the polynomial p of degree ’n’. Therefore, ”p+1” is nothing but the array
of pointers-to-coefficients of the polynomial p1 of degree ”n−1” used in the
recursion in chapter 12, Section 12.4. This is why this array is used in the
recursive call to the ”HornerArray” function above.

Thanks to the fact that the ”item” field is declared as protected (rather
than private) in the base ”list” class, it can be accessed from the derived
”polynomial” class as well. The ”operator()” function defined below uses this
property to apply the ”HornerArray” function to the array ”item” to produce
the required value of the current polynomial at the argument ’x’:

template<class T>
template<class S>
const T
polynomial<T>::operator()(const S&x) const{
return HornerArray(item,degree(),x);

} // Horner algorithm to calculate a polynomial
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In the functions defined further below, we’ll use this operator to write ”p(x)”
to obtain the value of the polynomial ’p’ at a given argument ’x’.

24.8 Polynomials of Two Variables

The template class ’T’ that denotes the type of the coefficients in the poly-
nomial is not necessarily a scalar. Here we’ll indeed see that it may well be
an object of variable size, e.g., a polynomial.

Indeed, in the polynomial of two variables introduced in chapter 12, Section
12.13, the coefficients ai(x) are polynomials in the independent variable x
rather than mere scalars. Here we’ll use this implementation to calculate the
value of a polynomial of two variables p(x, y) at some given arguments x and
y.

template<class T>
template<class S>
const S
polynomial<T>::operator()(const S&x,

const S&y) const{
return (*this)(y)(x);

} // compute p(x,y)

This function calls the original ”operator()” of Section 24.7 above twice. In
the first call, the argument y is used to obtain the polynomial p(·, y), in which
y is a fixed number. In the second call, the argument x is used to compute
the required output p(x, y).

24.9 Polynomials of Three Variables

Similarly, following their definition in Chapter 12, Section 12.19, polynomi-
als of three variables are implemented as polynomials with coefficients of the
form ai(x, y), which are polynomials of two variables rather than mere scalars.
Here is how this implementation is used to compute the value p(x, y, z) at some
given arguments x, y, and z:

template<class T>
template<class S>
const S
polynomial<T>::operator()(const S&x,

const S&y, const S&z) const{
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return (*this)(z)(y)(x);
} // compute p(x,y,z)

In this function, the original ”operator()” in Section 24.7 above is called three
times: the first time to calculate the polynomial p(·, ·, z) at the fixed argument
z, the second time to calculate the polynomial p(·, y, z) at the fixed arguments
y and z, and the third time to calculate the required value p(x, y, z) at the
given arguments x, y, and z.

24.10 Indefinite Integral

In Chapter 12, Section 12.9, we have introduced the indefinite integral of
the polynomial p(x), denoted by P (x). Here is the ordinary (nonmember)
function that returns this polynomial:

template<class T>
const polynomial<T>
indefiniteIntegral(const polynomial<T>&p){
polynomial<T> result(p.degree()+2,0);
for(int i=0; i<=p.degree(); i++)
result(i+1) = (1./(i+1)) * p[i];

return result;
} // indefinite integral

24.11 Integral on the Unit Interval

In Chapter 12, Section 12.10, we have described a method to calculate the
integral of a given polynomial p(x) over an interval of the form [a, b] and,
in particular, over the unit interval [0, 1]. Here is the ordinary (nonmember)
function that calculates this integral:

template<class T>
const T
integral(const polynomial<T>&p){
return indefiniteIntegral(p)(1.);

} // integral on the unit interval
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24.12 Integral on the Unit Triangle

In Chapter 12, Section 12.16, we have described a method to calculate the
integral of a given 2-d polynomial p(x, y) over the unit triangle. Here is the
ordinary (nonmember) function that calculates this integral:

template<class T>
const T
integral(const polynomial<polynomial<T> >&p){

First, the polynomial 1 − x is constructed using the constructor that takes
two ”double” coefficients, 1 and −1. This polynomial is then stored in the
polynomial object named ”oneMinusx”:

polynomial<T> oneMinusx(1.,-1.);

Next, the ”indefiniteIntegral” function is applied to the original polynomial
’p’ to produce the indefinite integral with respect to y, denoted by P (x, y)
in Chapter 12, Section 12.16. Then, the ”operator()” of Section 24.7 above
is applied to P (x, y) (with the 1-d polynomial argument 1− x) to substitute
1−x for y and produce P (x, 1−x). Finally, the original version of ”integral()”
is applied to the 1-d polynomial P (x, 1− x) to calculate its integral over the
unit interval:

return
integral(indefiniteIntegral(p)(oneMinusx));

} // integral on the triangle

Note the order in which the functions are called in the above code line. First,
”indefiniteIntegral()” is called to produce P (x, y). Then, ”operator()” is ap-
plied to it with the polynomial argument ”oneMinusx” to produce P (x, 1−x).
This is done by the ”operator()” of Section 24.7, with both ’S’ and ’T’ being
polynomials of one variable. Finally, the original ”integral()” version [rather
than the present one] is applied to the polynomial of one variable P (x, 1− x)
to calculate its integral over the unit interval, which is the desired result.

24.13 Integral on the Unit Tetrahedron

In Chapter 12, Section 12.22, we have described a method to integrate a
polynomial of three variables p(x, y, z) over the unit tetrahedron T in Figure
12.4. Here is the ordinary (nonmember) function that calculates this integral:
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template<class T>
const T
integral(const
polynomial<polynomial<polynomial<T> > >&p){

First, we need to produce the polynomial of two variables 1 − x − y. This
polynomial has two coefficients: a0(x) = 1 − x and a1(x) = −1. We start by
constructing a1(x), using the constructor that takes the integer argument 1
to indicate that this is a polynomial of degree 0 and the ”double” argument
−1 to indicate that its only coefficient is −1:

polynomial<T> minus1(1,-1.);

Next, we construct the polynomial a0(x) = 1 − x using the constructor that
takes two ”double” arguments to set the two coefficients, 1 and −1:

polynomial<T> oneMinusx(1.,-1.);

Finally, we construct the required polynomial 1− x− y using the constructor
that takes the two polynomial arguments a0(x) = 1− x and a1(x) = −1:

polynomial<polynomial<T> >
oneMinusxMinusy(oneMinusx,minus1);

The ”indefiniteIntegral” function is then applied to the original polynomial
p(x, y, z) to produce its indefinite integral with respect to the z spatial direc-
tion, denoted by P (x, y, z) in Chapter 12, Section 12.22. The original ”opera-
tor()” function in Section 24.7 above (with both ’S’ and ’T’ being polynomials
of two variables) is then applied to it, to calculate it at the fixed argument
z = 1− x− y and produce P (x, y, 1− x− y). Finally, the ”integral()” version
of the previous section is applied to P (x, y, 1−x− y) to produce the required
output:

return
integral(indefiniteIntegral(p)(oneMinusxMinusy));

} // integral on the tetrahedron

24.14 Exercises

1. Use the ”integral()” function in Section 24.12 above to compute the area
of the unit triangle t in Figure 12.2 by integrating the constant 2-d poly-
nomial p(x, y) ≡ 1 over it: ∫ ∫

t

dxdy = 1/2.
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2. The nodal basis functions in the unit triangle are the 2-d polynomials that
have the value 1 at one vertex and 0 at the two other vertices:

p0(x, y) = 1− x− y

p1(x, y) = x

p2(x, y) = y.

Use the above ”integral()” function to compute the integral of these func-
tions over the unit triangle, and show that it is the same:∫ ∫

t

p0dxdy =
∫ ∫

t

p1dxdy

=
∫ ∫

t

p2dxdy

= 1/6.

3. Furthermore, show that the integral over the unit triangle of the squares
of the nodal basis functions is also the same:∫ ∫

t

p2
0dxdy =

∫ ∫
t

p2
1dxdy

=
∫ ∫

t

p2
2dxdy

= 1/12.

4. Furthermore, show that the integral over the unit triangle of any product
of two different nodal basis functions is the same:∫ ∫

t

p0p1dxdy =
∫ ∫

t

p1p2dxdy

=
∫ ∫

t

p2p0dxdy

= 1/24.

5. Use the ”integral” function in Section 24.13 above to compute the volume
of the unit tetrahedron T by integrating the constant 3-d polynomial
p(x, y, z) ≡ 1 over it: ∫ ∫ ∫

T

dxdydz = 1/6.

6. The nodal basis functions in the unit tetrahedron are the polynomials that
have the value 1 at one corner and 0 at the three other corners:

p0(x, y, z) = 1− x− y − z

p1(x, y, z) = x

p2(x, y, z) = y

p3(x, y, z) = z.
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Use the above ”integral()” function to compute the integral of these func-
tion over the unit tetrahedron, and show that it is the same:∫ ∫ ∫

T

p0dxdydz =
∫ ∫ ∫

T

p1dxdydz

=
∫ ∫ ∫

T

p2dxdydz

=
∫ ∫ ∫

T

p3dxdydz

= 1/24.

7. Use the above ”integral()” function to show that the integral of the square
of the nodal basis functions is also the same:∫ ∫ ∫

T

p2
0dxdydz =

∫ ∫ ∫
T

p2
1dxdydz

=
∫ ∫ ∫

T

p2
2dxdydz

=
∫ ∫ ∫

T

p2
3dxdydz

= 1/60.

8. Use the above ”integral()” function to show that the integral of prod-
ucts of nodal basis functions over the tetrahedron is insensitive to any
permutation of the indices {0, 1, 2, 3}:∫ ∫ ∫

T

p0p1dxdydz =
∫ ∫ ∫

T

p1p2dxdydz

=
∫ ∫ ∫

T

p2p3dxdydz

=
∫ ∫ ∫

T

p3p0dxdydz

=
∫ ∫ ∫

T

p0p2dxdydz

=
∫ ∫ ∫

T

p1p3dxdydz

= 1/120

and
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T

p0p1p2dxdydz =
∫ ∫ ∫

T

p1p2p3dxdydz

=
∫ ∫ ∫

T

p2p3p0dxdydz

=
∫ ∫ ∫

T

p3p0p1dxdydz

= 1/720.

The solution can be found in Section 28.16 in the appendix.
9. Write a function ”d()” that takes a polynomial object p and an integer k

to produce the kth derivative of p. The solution can be found in Section
28.17 in the appendix.

10. Write a function ”d()” that takes a polynomial of two variables p and
two integers j and k to produce the (j, k)th partial derivative of p. The
solution can be found in Section 28.17 in the appendix.

11. Write a function ”d()” that takes a polynomial of three variables p and
three integers i, j, and k to produce the (i, j, k)th partial derivative of p.
The solution can be found in Section 28.17 in the appendix.
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Chapter 25

Sparse Polynomials

The polynomial object is implemented in the previous chapter under the
assumption that it is rather dense, that is, that most of its coefficients,
a0, a1, . . . , an, are nonzero, hence have to be stored. In this chapter, how-
ever, we are particularly interested in sparse polynomials, in which most of
the coefficients vanish, and only a few of them are nonzero. Thus, it makes
no sense to store all of the coefficients: it may save a lot of time and storage
resources to ignore the zero coefficients and store only the nonzero ones.

Sparse polynomials may contain any number of nonzero coefficients, which
is not always known in advance in compilation time. Therefore, the best way
to implement the sparse polynomial is in a linked list of nonzero coefficients.
The recursive nature of the linked list is particularly helpful in defining arith-
metic operations between sparse polynomials, including addition, multiplica-
tion, and composition.

25.1 The Monomial Object

In the standard implementation of a polynomial as a vector of coefficients,
the ith coefficient ai is placed in the ith component of the vector. This way,
the coefficient ai can be easily addressed through its virtual address: the index
i that indicates its place in the vector of coefficients.

In the present implementation of a sparse polynomial as a linked list of
nonzero coefficients, on the other hand, each nonzero coefficient ai must be
also accompanied with another field of type integer to contain the index i. In
other words, the sparse polynomial must be implemented as a linked list of
monomials of the form

aix
i.

Each such monomial must be implemented as a pair of two fields: a field of
the yet unspecified type ’T’ to contain the (real or complex) coefficient ai,
and an integer field to contain the index i, the power of x in the monomial.

Fortunately, we already have such an object available: the row-element ob-
ject in Chapter 20, Section 20.1. The required monomial object can thus be
derived from the base row-element object:

509
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template<class T>
class monomial : public rowElement<T>{
public:

The ”monomial” object inherits two fields from the base row-element object:
the first field ”value” (of type ’T’) and the second field ”column” (of type
integer). Thanks to the fact that these fields are declared as protected (rather
than the default private status) in the base ”rowElement” class, they can be
accessed from the derived ”monomial” class. Still, it makes much more sense
to access the second field, ”column”, by a new member function, that reflects
its new meaning as the power i in the monomial aix

i:

int getPower() const{
return column;

} // power in the monomial

The monomial object also inherits the default and copy constructors from the
base row-element object. Nevertheless, the constructor that takes two argu-
ments of type ’T’ and ”int” is not inherited properly and must be rewritten:

monomial(const T&coefficient=0, int power=0){
value = coefficient;
column = power;

} // constructor

Upon calling this constructor, the underlying row-element object is con-
structed by its own default constructor, so the ”value” and ”column” fields
take the default values assigned to them in the default constructor of the
”rowElement” class. These fields are then assigned more meaningful values in
the body of the above constructor.

Furthermore, we also define a function that “converts” the monomial object
to a ’T’ object. In other words, this function just returns the field ”value” in
the base row-element object:

operator T() const{
return value;

} // converter

With this converter, the user can define, say, a monomial ’m’ (a variable
of type ”monomial<double>”), and then obtain its coefficient (the ”value”
field in the underlying ”rowElement” object) by just writing ”double(m)” or
”(double)m”.

Below we define some more operators that are special to the monomial
object and reflect its nature.
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25.2 Multiplying Monomials

In the base ”rowElement” class in Chapter 20, Section 20.1, there is no
operator to multiply two row-element objects by each other, as such an oper-
ation would make no mathematical sense. In the derived ”monomial” class, on
the other hand, such an operation indeed makes a lot of sense. For example,
the product of the two monomials aix

i and bjx
j yields the monomial(

aix
i
) (

bjx
j
)

= aibjx
i+j .

In other words, the coefficient in the product monomial is the product of the
original coefficients, and the power in the product monomial is the sum of the
original powers. This is indeed implemented in the following ”*=” operator,
which multiplies the current monomial aix

i by an argument monomial of the
form bjx

j :

const monomial&operator*=(const monomial&m){
value *= m.value;
column += m.column;
return *this;

} // multiplying by a monomial
};

This completes the block of the ”monomial” class. The above member operator
can now be used to define an ordinary operator to multiply two monomial
objects by each other:

template<class T>
const monomial<T>
operator*(const monomial<T>&m1,

const monomial<T>&m2){
return monomial<T>(m1) *= m2;

} // multiplying two monomials

The monomial object can now be used to define the sparse-polynomial object.

25.3 The Sparse-Polynomial Object

Once the monomial object is well defined, we can define the sparse-
polynomial object as a linked list of monomial objects. This way, there is no
limit on the number of monomials used in a sparse polynomial. Furthermore,
monomials can be added to and dropped from an existing sparse polynomial
in run time using member functions inherited from the base linked-list class.
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template<class T>
class sparsePolynomial :

public linkedList<monomial<T> >{
public:

First, we define a constructor that takes a monomial argument:

sparsePolynomial(const monomial<T>&m){
item = m;

} // constructor with a monomial argument

Upon calling this constructor, the underlying linked-list object is constructed
by the default constructor of the base ”linkedList” class. The first item in this
linked list, the field ”item” inherited from the base ”linkedList” class, is then
set to have the same value as the monomial argument in the above constructor,
using the assignment operator inherited from the base ”rowElement” class.

Similarly, we also define a constructor that takes ’T’ and integer arguments:

sparsePolynomial(const T&t=0, int n=0){
item = monomial<T>(t,n);

} // constructor with T and integer arguments

Furthermore, we define a constructor that takes a linked-list argument:

sparsePolynomial(linkedList<monomial<T> >&){
} // trivial constructor

Upon calling this constructor, the copy constructor of the base ”linkedList”
class is invoked to initialize the underlying linked-list object with the argument
passed to the constructor. Since this completes the construction of the sparse-
polynomial object, no further action is needed, so the body of the above
constructor is empty.

Furthermore, we define functions that read the first monomial in the sparse-
polynomial object (the ”item” field in the underlying linked list of monomials),
the coefficient ai in it (the ”value” field in this monomial object), and its power
i (the ”column” field in the monomial ”item”):

const monomial<T>& operator()() const{
return item;

} // read first monomial

const T& getValue() const{
return item.getValue();

} // read the coefficient in the first monomial

int getPower() const{
return item.getColumn();

} // the power in the first monomial
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Moreover, we define member functions not only to append but also to con-
struct and append a new monomial at the end of the current sparse polyno-
mial:

void append(const T&t, int n){
monomial<T> mon(t,n);
linkedList<monomial<T> >::append(mon);

} // construct and append a monomial

void append(monomial<T>&m){
linkedList<monomial<T> >::append(m);

} // append a monomial

Finally, we also declare some member functions, to be defined later in detail:
Note that the scalar argument passed to these functions is not necessarily of
the same type as the coefficients in the monomials. This is why it is denoted
by the extra template symbol, ’S’, which may be different from ’T’:

template<class S>
const sparsePolynomial& operator*=(const S&);

template<class S>
const T modifiedHorner(const S&, int) const;

template<class S>
const T operator()(const S&) const;

template<class S>
const S operator()(const S&, const S&) const;

template<class S>
const S operator()(const S&, const S&,

const S&) const;
};

This completes the block of the ”sparsePolynomial” class.
Below we define the member operator that multiplies the current sparse-

polynomial object by a scalar of type ’S’. (The common application of this
operator is with ’S’ being a monomial.) This operator is then used to multiply
two sparse polynomials by each other.

25.4 Multiplying a Sparse Polynomial by a Scalar

The member operator that multiplies the current sparse-polynomial object
by an object of type ’S’ (which is usually a monomial ) uses fully the recursive
nature of the underlying linked-list object:
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template<class T>
template<class S>
const sparsePolynomial<T>&
sparsePolynomial<T>::operator*=(const S&m){
item *= m;

Indeed, first of all the first monomial, ”item”, is multiplied by the argument
’m’ by invoking the relevant ”*=” operator of the ”monomial” class. Then,
the present ”*=” operator is called recursively to multiply the rest of the
monomials in the current sparse-polynomial object by ’m’ as well:

if(next) *(sparsePolynomial<T>*)next *= m;
return *this;

} // current sparse polynomial times a scalar

Note that the field ”next” that points to the rest of the monomials in the
current sparse-polynomial object is of type pointer-to-linked-list; this is why
it must be converted explicitly to type pointer-to-sparse-polynomial before
the recursive application of the ”*=” function can be used in the above code.

The above member operator is now used to define ordinary (nonmember)
’*’ operators to multiply sparse polynomial and scalar:

template<class T, class S>
const sparsePolynomial<T>
operator*(const S&m, const sparsePolynomial<T>&p){
return sparsePolynomial<T>(p) *= m;

} // scalar times sparse polynomial

template<class T, class S>
const sparsePolynomial<T>
operator*(const sparsePolynomial<T>&p, const S&m){
return sparsePolynomial<T>(p) *= m;

} // sparse polynomial times scalar

Below we use these operators to define the operator that multiplies two sparse
polynomials by each other.

25.5 Multiplying Sparse Polynomials

The recursive nature of the underlying linked-list object is also used to
define the operator that multiplies two sparse polynomials (denoted by ’p’
and ’q’) by each other:
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template<class T>
const sparsePolynomial<T>
operator*(const sparsePolynomial<T>&p,

const sparsePolynomial<T>&q){
sparsePolynomial<T> result = q() * p;

Indeed, first of all, the operator defined in the previous section is used to
multiply ’p’ by the first monomial in ’q’, ”q()”, returned by the ”operator()”
inherited from the base ”linkedList” class. The result of this multiplication is
stored in the local sparse polynomial named ”result”.

Then, the present function is called recursively to multiply ’p’ by the rest
of the monomials in ’q’. The result of this multiplication is stored in the local
sparse polynomial named ”rest”:

if(q.readNext()){
sparsePolynomial<T> rest =

*(const sparsePolynomial<T>*)q.readNext() * p;

Note that the field ”next” in the sparse-polynomial object ’q’ that points to
the rest of the monomials in ’q’ is of type pointer-to-linked-list; therefore, it
must be converted explicitly to type pointer-to-sparse-polynomial before the
present function can be applied recursively to it.

Finally, the sum of the local sparse polynomials ”result” and ”rest” is re-
turned as the required output:

result += rest;
}
return result;

} // sparse polynomial times sparse polynomial

Below we also define the operator that adds two sparse polynomials to each
other.

25.6 Adding Sparse Polynomials

The linked-list class in Chapter 17, Section 17.3, serves as a base class not
only for the present sparse-polynomial class but also for the ”mesh” class in
Chapter 21, Section 21.10. Indeed, the mesh object is defined as a linked list
of cells, where a cell object contains pointers to its nodes. Each node object in
each cell contains an integer field named ”sharingCells” to count how many
cells in the mesh share the node as their joint vertex.

The mesh object is thus a very special object. Indeed, when a cell is added
to it or used to construct it in the first place, the cell must be nonconstant, so
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that the ”sharingCells” fields of its nodes may increase when more and more
cells share them.

This is also why the base ”linkedList” class in Chapter 17, Section 17.3, uses
nonconstant arguments in its member functions. This way, these functions can
be used in the derived ”mesh” class as well.

The above feature also affects the present sparse-polynomial class, derived
from the base linked-list class. Indeed, in the ”operator+” function that adds
two sparse polynomials to each other, one would naturally like to use con-
stant arguments, to allow also the addition of temporary unnamed sparse-
polynomial objects by potential users of the function. Unfortunately, the
”operator+” function calls the ”+ =” operator inherited from the base linked-
list class, which takes nonconstant argument only. As a result, constant argu-
ments passed to the ”operator+” function cannot be passed to the inner call
to the ”+ =” operator: indeed, the compiler would refuse to accept them, out
of fear that the constant argument might change throughout the execution
of the ”+ =” function. To overcome this problem, local nonconstant well-
named copies of these constant arguments must be used for this purpose. The
sum of these copies can then be converted implicitly from a mere linked list
to the required sparse-polynomial object (using the relevant constructor in
the ”sparsePolynomial” class) and be returned as the desired output of the
function.

template<class T>
const sparsePolynomial<T>
operator+(const sparsePolynomial<T>&p,

const sparsePolynomial<T>&q){
sparsePolynomial<T> p2 = p;
sparsePolynomial<T> q2 = q;
p2 += q2;
return p2;

} // adding two sparse polynomials

The above operator is used further in the modified Horner code below to
calculate the value of a sparse polynomial and the composition of two sparse
polynomials.

25.7 The Modified Horner Code

Here we implement the modified Horner algorithm in Chapter 12, Section
12.11 to compute the value of a given sparse polynomial p at a given argument
x. For this, we use the template function ”power()” in Chapter 16, Section
16.17, which calculates the power xn for any argument x of any type.
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The two template symbols ’S’ and ’T’ provide extra flexibility to users of the
function defined below. Indeed, they can use it not only with both ’S’ and ’T’
being scalars to compute the value p(x) of a polynomial of one independent
variable but also to compute the polynomial p(x, y0) obtained by fixing y = y0

in a given polynomial p(x, y) of two independent variables. These possibilities
will be useful later on.

template<class T>
template<class S>
const T
sparsePolynomial<T>::modifiedHorner(const S&x,

int n) const{

The function also takes an extra integer argument n; this parameter is sub-
tracted from all the powers in the monomials in the current sparse polynomial.
For example, if the current sparse polynomial is

p(x) = alx
l + akxk + · · ·

for some n ≤ l < k, then we can actually work with the more general sparse
polynomial

alx
l−n + akxk−n + · · · .

Clearly, one can always use n = 0 to obtain the original polynomial p(x) as a
special case. This more general formulation that uses the extra parameter n,
though, is particularly helpful in the recursion below.

As in the definition in Chapter 12, Section 12.11, the modified Horner algo-
rithm distinguishes between two possible cases: the case in which the power
l − n in the first monomial is positive, in which the common factor xl−n is
taken out of parentheses,

return
getPower() > n ?
power(x, getPower() - n)
* modifiedHorner(x, getPower())

and the case in which the first monomial is just a scalar (that is, l = n), in
which it is just added to the result of the recursive call:

:
readNext() ?
getValue() + ((sparsePolynomial<T>*)
readNext())->modifiedHorner(x,n)

:
getValue();
} // modified Horner algorithm
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As mentioned above, the original application of the ”modifiedHorner” function
to the original polynomial p uses the parameter n = 0. We therefore define an
”operator()” member function that takes an argument x to calculate p(x):

template<class T>
template<class S>
const T
sparsePolynomial<T>::operator()(const S&x) const{
return modifiedHorner(x,0);

} // compute p(x)

This operator makes life particularly easy for potential users of the sparse-
polynomial class. Indeed, once they have defined a sparse polynomial ’p’, they
can just write ”p(x)” to have its value for any scalar argument ’x’. Below we’ll
see how helpful this operator is also in computing the value of a polynomial
p(x, y) at given arguments x and y.

25.8 Polynomials of Two Variables

Here we implement sparse polynomials of two independent variables x and
y of the form

p(x, y) ≡
∑

ai(x)yi,

where ai() is by itself a sparse polynomial in x rather than a mere scalar
(Chapter 12, Section 12.13). In fact, we already have the required framework:
p(x, y) can be implemented as ”sparsePolynomial<T>”, where the template
parameter ’T’ is by itself the sparse-polynomial object that stores the poly-
nomial ai(x). Here is how this framework is used to calculate the value of
p(x, y) for some given numbers x and y. This is done below in the member
”operator()” function that takes two arguments, x and y. This function uses
two template symbols: ’S’, which stands for a scalar, and ’T’, which stands
for a polynomial in a variable of type ’S’:

template<class T>
template<class S>
const S
sparsePolynomial<T>::operator()(const S&x,

const S&y) const{
return (*this)(y)(x);

} // compute p(x,y)

For a current sparse polynomial p(x, y) of two variables, this function uses
two calls to the previous version of ”operator()” that uses one argument only.
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The first call uses the argument y to produce the polynomial p(·, y) (where y
is now a fixed number rather than a variable). The second call uses then the
argument x to produce the required number p(x, y).

25.9 Polynomials of Three Variables

Similarly, a sparse polynomial of three variables of the form

p(x, y, z) ≡
∑

i

ai(x, y)zi

(where ai(x, y) is now a sparse polynomial of two variables) can be imple-
mented as a sparse polynomial whose coefficients are no longer scalars but
rather sparse polynomials of two variables. With this implementation, the
calculation of p(x, y, z) for a current sparse polynomial p and three given
arguments x, y, and z is particularly easy:

template<class T>
template<class S>
const S
sparsePolynomial<T>::operator()(const S&x,

const S&y, const S&z) const{
return (*this)(z)(y)(x);

} // compute p(x,y,z)

This function uses three calls to the original version of ”operator()” with one
argument only. The first call produces the sparse polynomial of two variables
p(·, ·, z), where z is the fixed argument. The second call produces in turn the
polynomial of one variable p(·, y, z), where both y and z are fixed arguments.
Finally, the third call produces the required number p(x, y, z), where x, y,
and z are the given arguments. With this operator, the users can now define
a sparse polynomial ’p’ of three independent variables and obtain its value
simply by writing ”p(x,y,z)” for any suitable scalars ’x’, ’y’, and ’z’.

25.10 Exercises

1. Use the sparse-polynomial template class to define the polynomial

p(x) ≡ x + 2x3.
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2. Use the ”operator*” function to calculate the product polynomial

p2 = p · p.

3. Use the ”operator()” member function to calculate p(x) for x = 3, 5, 7,
and 9. The solution can be found in Section 28.19 in the appendix.

4. Implement the modified Horner algorithm in Chapter 12, Section 12.12, in
the ordinary function ”operator&” that takes two sparse-polynomial ar-
guments to produce their composition. (With this function, the users can
simply write ”p&q” to obtain the composition of the sparse polynomials
’p’ and ’q’.) The solution can be found in Section 28.18 in the appendix.

5. Use the above ”operator&” function to calculate the composition polyno-
mial p ◦ p for the above concrete polynomial p(x) = x + 2x3.

6. Furthermore, use ”operator&” twice to calculate p ◦ p ◦ p. (Do this in
a single code line.) The solution can be found in Section 28.19 in the
appendix.

7. The above exercise can be solved only thanks to the fact that the ”modi-
fiedHorner” and ”operator()” member functions are declared as constant
functions that cannot change the current sparse-polynomial object. Ex-
plain why this statement is true.

8. Use your code to verify that

p(p(p(x))) = (p ◦ p ◦ p)(x)

for x = ±0.5 and x = ±1.5.
9. Implement the polynomial of two variables

p2(x, y) = (x + 2x3)(y + y3)

as a sparse polynomial with coefficients that are by themselves sparse
polynomials in x. Use the ”operator()” defined in Section 25.8 above to
calculate p2(2, 3). The solution can be found in Section 28.19 in the ap-
pendix.
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Stiffness and Mass Matrices

In this chapter, we use the three-dimensional mesh of tetrahedra, along with
the three-dimensional polynomials, to form the so-called stiffness and mass
matrices, which are particularly useful in scientific computing [4] [29]. In fact,
the mathematical objects developed throughout the book are combined here
to form an advanced practical tool in applied science and engineering.

26.1 The Neumann Matrix

Let M be a mesh of tetrahedra, and N the set of nodes in it. Let |N |
denote the number of nodes in N . Here we define the |N | × |N | Neumann
matrix A, which is most important in realistic applications in applied science
and engineering.

Furthermore, let T be the unit tetrahedron in Figure 12.4. Recall from the
exercises at the end of Chapter 24 that the volume of this tetrahedron is 1/6.

In the following, we use notation like i for a node in N , and the correspond-
ing integer i (1 ≤ i ≤ |N |) to denote its index in the list of nodes in the
mesh.

For each tetrahedron t in M , denote

t = (k, l,m,n),

where k, l, m, and n are the 3-d vectors that are the corners of t, in some
order that is determined arbitrarily in advance. Define the 3-d polynomials

Pk,t(x, y, z) = 1− x− y − z

Pl,t(x, y, z) = x

Pm,t(x, y, z) = y

Pn,t(x, y, z) = z,

where k, l, m, and n are the corresponding indices of k, l, m, and n in the list
of nodes in N . Furthermore, define the constant 3-d vectors (the gradients of
these polynomials) by

521
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gk,t = ∇Pk,t =

−1
−1
−1


gl,t = ∇Pl,t =

1
0
0


gm,t = ∇Pm,t =

0
1
0


gn,t = ∇Pn,t =

0
0
1

 .

As in Chapter 12, Section 12.32, define the 3× 3 matrix

St ≡ (l− k | m− k | n− k) .

For every 1 ≤ i, j ≤ |N |, the above notations are now used to define the
element ai,j in A:

ai,j ≡
∑

t∈M, i,j∈t

|det(St)|gt
j,tS

−1
t S−t

t gi,t

∫ ∫ ∫
T

dxdydz

=
1
6

∑
t∈M, i,j∈t

|det(St)|gt
j,tS

−1
t S−t

t gi,t,

where gt
j,t is the row vector that is the transpose of the column vector gj,t, and

S−t
t is the transpose of the inverse of the 3× 3 matrix St. This completes the

definition of the |N | × |N | Neumann matrix A, the major part in the stiffness
matrix defined below.

26.2 The Boundary Matrix

Here we define the so-called “boundary” matrix A(b), the second component
in the stiffness matrix defined below. Indeed, this |N | × |N | matrix will be
added to the Neumann matrix A defined above to form the stiffness matrix
below.

Let T denote the unit triangle in Figure 12.2. Furthermore, let ∂M denote
the boundary of the mesh M , that contains only triangles that distinguish
between M and the outside 3-D space that surrounds it. In fact, a triangle
t ∈ ∂M also satisfies

t ⊂ R3 \ ∂M.
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In other words, a triangle t in ∂M cannot serve as a side in more than one
tetrahedron in M :

|{q ∈M | t ⊂ q}| = 1,

where q denotes the (only) tetrahedron in M that uses the triangle t as a side.
Let b ⊂ ∂M be a subset that contains some of these boundary triangles.

We denote a triangle in b by

t ≡ 4(k, l,m),

where k, l, and m are the 3-d vectors that are the nodes in N that lie in the
vertices of this triangle, ordered in some arbitrary order that is determined in
advance.

Moreover, define the 2-d polynomials

qk,t(x, y) = 1− x− y

ql,t(x, y) = x

qm,t(x, y) = y,

where k, l, and m are the corresponding indices in the list of nodes in N . For
every distinct indices 1 ≤ i 6= j ≤ |N |, the (i, j)th element in A(b) is defined
by

A
(b)
i,j ≡

∑
t=4(i,j,k)∈b

‖(j− i)× (k− i)‖2
∫ ∫

T

qi,tqj,tdxdy

=
1
24

∑
t=4(i,j,k)∈b

‖(j− i)× (k− i)‖2,

where ’×’ stands for the vector product defined in Chapter 9, Section 9.25.
This completes the definition of the off-diagonal elements in A(b). The main-

diagonal elements are now defined to be the same as the sum of the corre-
sponding off-diagonal elements in the same row:

A
(b)
i,i ≡

∑
j 6=i

A
(b)
i,j .

This completes the definition of the boundary matrix A(b).

26.3 The Stiffness Matrix

The stiffness matrix A(s) is now defined as the sum of the two matrices
defined above:
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A(s) ≡ A + αA(b),

where α is some given parameter.
The stiffness matrix defined above is particularly important in practical ap-

plications in computational physics and engineering. Next, we define another
important matrix, called the mass matrix.

26.4 The Mass Matrix

Here we define the mass matrix A(m). In the sequel, we use T to denote the
unit tetrahedron in Figure 12.4, and use the 3-d integrals calculated over it
in the exercises at the end of Chapter 24.

For 1 ≤ i, j ≤ |N |, the (i, j)th element in A(m) is defined by

A
(m)
i,j =

∑
t∈M, i,j∈t

|det(St)|
∫ ∫ ∫

T

Pi,tPj,tdxdydz

=
{ 1

120

∑
t∈M, i,j∈t |det(St)| if i 6= j

1
60

∑
t∈M, i,j∈t |det(St)| if i = j.

This completes the definition of the mass matrix A(m). In the next section,
we extend this definition to obtain the so-called Newton’s mass matrix.

26.5 Newton’s Mass Matrix

Let u be a grid function that returns the real number ui for every node i in
N . In other words,

u : N → R,

or
u ∈ RN .

We now use the 3-d polynomials defined in Section 26.1 above to define
another grid function, denoted by f(u):

f(u)i ≡
∑

t∈M, i∈t=(k,l,m,n)

|det(St)|
∫ ∫ ∫

T

(ukPk,t + ulPl,t + umPm,t + unPn,t)3Pi,tdxdydz

(for every node i ∈ N). In fact, this defines a function (or operator)
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f : RN → RN ,

which takes a grid function u to produce the new grid function f(u).
Clearly, f is a nonlinear function. Still, for every fixed grid function v, one

may define a linear function that approximates f best in a small neighborhood
around v. This linear function from RN to RN is called the linearization of
f at v. Clearly, it depends on the particular grid function v that has been
picked. To define it, we need first to define Newton’s mass matrix.

For any fixed grid function v, Newton’s mass matrix, A(n)(v) is defined as
follows. For every 1 ≤ i, j ≤ |N |, the (i, j)th element in A(n)(v) is defined by
[partial derivation (under the integral sign) of f(v)i with respect to vj]

A(n)(v)i,j ≡
∑

t∈M, i,j∈t=(k,l,m,n)

|det(St)|

·
∫ ∫ ∫

T

3(vkPk,t + vlPl,t + vmPm,t + vnPn,t)2Pi,tPj,tdxdydz.

The matrix A(n)(v) is called the Jacobian matrix of f at v. Using it, one can
now define the linearization of f at v as the linear mapping

u→ A(n)(v)u, u ∈ RN .

26.6 Helmholtz Mass Matrix

Consider now a complex-valued grid function v : N → C, or v ∈ CN . In
fact, v can be written in terms of its real and imaginary parts:

vi = <vi +
√
−1=vi.

[Such a separation is used in [3] to apply a finite-difference scheme to the one-
dimensional nonlinear Helmholtz equation.] Furthermore, the complex number
vi can be interpreted as a point in the 2-d Cartesian plane:

vi =
(
<vi

=vi

)
(Chapter 5). In this interpretation, v can be viewed as a function from N to
R2, or

v ∈ (R2)N .

This is why the function v is also called a vector grid function.
Consider now a function (or operator) f : CN → CN that transforms a

complex-valued grid function v into another complex-valued grid function
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f(v). In fact, f(v) can also be written in terms of its real and imaginary
parts.

f(v)i = <f(v)i +
√
−1=f(v)i, i ∈ N.

Furthermore, f(v)i can also be interpreted as a point in the 2-d Cartesian
plane:

f(v)i =
(
<f(v)i
=f(v)i

)
.

This way, f(v) is interpreted as a vector grid function as well, and f is actually
interpreted as an operator on the set of all vector grid functions:

f : (R2)N → (R2)N .

Let us now define some helpful notation. For every tetrahedron t =
(k, l,m,n) ∈M , let us denote for short

Pt(v) = vkPk,t + vlPl,t + vmPm,t + vnPn,t.

In fact, this 3-d polynomial can also be written in terms of its real and imag-
inary parts:

Pt(v) = <Pt(v) +
√
−1=Pt(v)

= <vkPk,t + <vlPl,t + <vmPm,t + <vnPn,t

+
√

(− 1) (=vkPk,t + =vlPl,t + =vmPm,t + =vnPn,t) .

Let us use this notation to define f more explicitly as a generalization of
the function f in Section 26.5 above:

f(v)i

≡
∑

t∈M, i∈t

|det(St)|
∫ ∫ ∫

T

|Pt(v)|2Pt(v)Pi,tdxdydz

=
∑

t∈M, i∈t

|det(St)|
∫ ∫ ∫

T

(
<2Pt(v) + =2Pt(v)

)
<Pt(v)Pi,tdxdydz

+
√
−1

∑
t∈M, i∈t

|det(St)|
∫ ∫ ∫

T

(
<2Pt(v) + =2Pt(v)

)
=Pt(v)Pi,tdxdydz

(for every node i ∈ N). This way, f is written in terms of its real and imaginary
parts, as before.

The so-called Helmholtz mass matrix can be viewed as a generalization of
Newton’s mass matrix, with elements that are no longer scalars but rather
2×2 block matrices. More specifically, the (i, j)th 2×2 block in the Helmholtz
mass matrix A(h)(v) is defined as follows. Its upper left element is defined by
[partial derivation (under the integral sign) of <f(v)i with respect to <vj]
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A(h)(v)i,j

)
1,1

≡
∑

t∈M, i∈t

|det(St)|
∫ ∫ ∫

T

(
3<2Pt(v) + =2Pt(v)

)
Pi,tPj,tdxdydz.

Furthermore, its upper right element is defined by [partial derivation (under
the integral sign) of <f(v)i with respect to =vj](

A(h)(v)i,j

)
1,2
≡

∑
t∈M, i∈t

|det(St)|
∫ ∫ ∫

T

2<Pt(v)=Pt(v)Pi,tPj,tdxdydz.

Similarly, its lower left element is defined by [partial derivation (under the
integral sign) of =f(v)i with respect to <vj](

A(h)(v)i,j

)
2,1
≡

∑
t∈M, i∈t

|det(St)|
∫ ∫ ∫

T

2<Pt(v)=Pt(v)Pi,tPj,tdxdydz

=
(
A(h)(v)i,j

)
1,2

.

Finally, its lower right element is defined by [partial derivation (under the
integral sign) of =f(v)i with respect to =vj](

A(h)(v)i,j

)
2,2

≡
∑

t∈M, i∈t

|det(St)|
∫ ∫ ∫

T

(
<2Pt(v) + 3=2Pt(v)

)
Pi,tPj,tdxdydz.

This completes the definition of the Helmholtz mass matrix A(h)(v) at the
given vector grid function v.

The power of object-oriented programming is apparent in the implementa-
tion of this matrix. Indeed, it can be implemented in a sparse-matrix object,
with ’T’ being a ”matrix2” object.

The Helmholtz mass matrix can now be used to linearize f at v. Indeed,
when v is interpreted as a function in (R2)N and f is interpreted as a (non-
linear) operator

f : (R2)N → (R2)N

that maps every vector grid function u ∈ (R2)N into a vector grid function
f(u) ∈ (R2)N , the best linear approximation to f in a neighborhood of v is
the linear mapping

u→ A(h)(v)u, u ∈ (R2)N .
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26.7 Helmholtz Matrix

Recall from the exercises at the end of Chapter 5 that every complex number
c = a +

√
−1b can be implemented as the 2× 2 matrix(

a −b
b a

)
.

In particular, when c is actually a real number with no imaginary part (b = 0),
it can be realized as the diagonal 2× 2 matrix(

a 0
0 a

)
.

Using this representation, the elements in the Neumann matrix A, the bound-
ary matrix A(b), and the mass matrix A(m) can now be replaced by diagonal
2 × 2 blocks. This way, these elements are interpreted not merely as real
numbers in the real axis in Figure 5.2 but rather as real numbers (with no
imaginary parts) in the complex plane in Figure 5.4.

This is not merely a semantic difference. In fact, it also makes a practical
difference: the matrices A, A(b), and A(m) can now be multiplied by a constant
complex coefficient, represented as a 2× 2 matrix as well.

The above implementation allows one to define the so-called Helmholtz
matrix

H(v) ≡ A−
√
−1βA(b) − β2A(m) − β2A(h)(v),

where β is a complex number with a positive real part. (In most applications,
β is a positive integer number.) Here β is represented by the 2× 2 matrix

β =
(
<β −=β
=β <β

)
,

the elements in A, A(b), and A(m) are implemented as the 2 × 2 blocks that
represent the original real elements embedded in the complex plane, and the
imaginary number

√
−1 is implemented as the 2× 2 matrix

√
−1 =

(
0 −1
1 0

)
.

The construction of this matrix is left to the exercises, with solutions in the
appendix.

26.8 Newton’s Iteration

Consider the nonlinear mapping F : (R2)N → (R2)N defined by

© 2009 by Taylor and Francis Group, LLC



26.9. DIRICHLET BOUNDARY CONDITIONS 529

F (u) ≡
(
A−
√
−1βA(b) − β2A(m)

)
u− β2f(u),

u ∈ (R2)N . Consider the following problem: find a vector grid function v ∈
(R2)N for which

F (v) = 0

(where 0 is the 2|N |-dimensional zero vector). To solve this problem, we’ll use
the property that the nonlinear mapping

u→ F (u)

is linearized at v by the linear mapping

u→ H(v)u.

Indeed, this property allows one to add suitable correction terms in an iterative
method that converges rapidly to the desired solution v.

The Newton iteration that converges to the required solution v is defined
as follows:

1. Let v(0) ∈ (R2)N be a suitable initial guess.
2. For i = 0, 1, 2, . . .,

a) Solve the linear system

H(v(i))x = F (v(i))

for the unknown vector x.
b) Define

v(i+1) ≡ v(i) − x.

Below we’ll see how the Newton iteration can also be applied to a restrained
problem.

26.9 Dirichlet Boundary Conditions

Here we consider a restrained problem, in which the values of the unknown
grid function v are prescribed in advance at a subset G of boundary nodes.
These restraints are called Dirichlet boundary conditions.

Let
G ≡ N ∩ (∂M \ b)

be the set of boundary nodes that do not lie in the set b (defined in Section
26.2). Let

R ≡ N \G

be the complementary set of nodes that are not in G. The splitting
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N = R ∪G

in terms of the disjoint subsets R and G induces (after a suitable reordering
of components) the representation of any vector grid function u ∈ (R2)N in
terms of 2|R|-dimensional and 2|G|-dimensional subvectors:

u =
(

uR

uG

)
.

Furthermore, the nonlinear mapping F (u) defined above can also be written
as

F (u) =
(

FR(u)
FG(u)

)
.

Moreover, this splitting also induces (after a suitable reordering of rows and
columns) the block representation

H(u) =
(

HRR(u) HRG(u)
HGR(u) HGG(u)

)
.

Consider now the following restrained problem. Let DG be a given 2|G|-
dimensional vector. Find a vector grid function v ∈ (R2)N that satisfies both

vG = DG

and
FR(v) = 0

(where 0 is the zero 2|R|-dimensional vector).
This formulation uses 2|R| algebraic equations. Still, one could add to it

other 2|G| dummy (trivial) equations to come up with an equivalent un-
restrained formulation that uses a total of 2|N | algebraic equations: find
v ∈ (R2)N that satisfies

F̃ (v) ≡
(

FR(v)
vG −DG

)
= 0

(where 0 is the 2|N |-dimensional zero vector).
Clearly, the nonlinear mapping

u→ F̃ (u)

is linearized at v by the linear mapping

u→
(

HRR(v) HRG(v)
0 I

)
u,

where I is the identity matrix of order 2|G|. Thus, the Newton iteration to
solve this problem takes the following form:
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1. Let v(0) ∈ (R2)N be a suitable initial guess of the form

v(0) =
(

v
(0)
R

DG

)
.

2. For i = 0, 1, 2, . . .,
a) Solve the linear system(

HRR(v(i)) HRG(v(i))
0 I

)
x = F̃ (v(i)),

where I is the 2|G|×2|G| identity matrix. In fact, since (by induction
on i) the second subvector in both F̃ (v(i)) and x vanishes, this system
is equivalent to (

HRR(v(i)) 0
0 I

)
x = F̃ (v(i)).

(The matrix on the left-hand side is called the Dirichlet matrix.)
b) Define

v(i+1) ≡ v(i) − x.

26.10 Exercises

1. Show that the Neumann matrix A defined in Section 26.1 above is sym-
metric.

2. Show that the row sums in A are all equal to zero.
3. Conclude that the column sums in A are equal to zero as well.
4. Let w ∈ RN be the constant grid function:

wi = C, i ∈ N,

for some constant number C. Show that

Aw = 0.

5. Conclude that A is singular (A−1 doesn’t exist).
6. Conclude that

det(A) = 0.

7. Show that all the elements in the boundary matrix A(b) are nonnegative.
8. Show that the boundary matrix A(b) is symmetric.
9. Conclude that the stiffness matrix A(s) is symmetric as well.
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10. Write the constructor that takes the 3-d mesh M as an argument and
produces the stiffness matrix A(s) (with α = 1) in a sparse-matrix object.
It is assumed that the mesh M covers the unit cube, as in Section 28.15
in the appendix. Furthermore, it is also assumed that b, the subset of the
boundary ∂M , contains five sides of the unit cube:

b = {(x, y, z) | (1− x)y(1− y)z(1− z) = 0} .

Moreover, it is assumed that at least one refinement step has been applied
to M ; otherwise, coarse triangles in the bottom side of the cube may
contribute to A(b), although they should be excluded from b. The solution
can be found in Section 28.20 in the appendix.

11. Show that the mass matrix A(m) is symmetric.
12. Show that all the elements in A(m) are nonnegative.
13. Assume that the definition of the above grid function w uses the constant

C = 1/sqrt3. Show that the mass matrix can be obtained as a special
case of Newton’s mass matrix:

A(m) = A(n)(w).

14. Write the constructor that takes the 3-d mesh M as an argument and
produces Newton’s mass matrix in a sparse-matrix object. The 3-d poly-
nomials Pk,t, Pl,t, Pm,t, and Pn,t of Section 26.1 should be passed to
the constructor by reference in the 3-d polynomial objects ”P[0]”, ”P[1]”,
”P[2]”, and ”P[3]” defined in Section 28.16 in the appendix. Note that
the constructor should also have two ”dynamicVector” arguments that
are passed to it by reference: one to take the input grid function v, and
another one to store the output grid function f(v) that is also produced
by the constructor. The solution can be found in Section 28.21 in the
appendix.

15. Modify the above constructor to produce Helmholtz mass matrix. The
solution can be found in Section 28.22 in the appendix.

16. Modify the constructor of the stiffness matrix A(s) above to produce 2×2
block elements of the form(

ai,j 0
0 ai,j

)
−
(

0 −1
1 0

)(
<β −=β
=β <β

)(
A

(b)
i,j 0
0 A

(b)
i,j

)
rather than the original scalar elements

ai,j + αA
(b)
i,j

in the original constructor.
17. Show that the mass matrix of Section 26.4 above can be represented equiv-

alently with 2× 2 block elements as

A(m) = A(h)(w) + A(h)(
√
−1w),
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where w can be interpreted as the constant vector grid function

wi ≡
(

1/
√

3
0

)
,

and
√
−1w can be interpreted as the constant vector grid function

√
−1wi ≡

(
0

1/
√

3

)
,

for every node i ∈ N .
18. Combine the above modified constructors to produce the Helmholtz ma-

trix
H(v) ≡ A−

√
−1βA(b) − β2A(m) − β2A(h)(v),

where A, A(b), and A(m) are interpreted to have 2×2 block elements that
are the same as the original real elements embedded in the complex plane,
the complex number β is implemented as the 2× 2 matrix

β =
(
<β −=β
=β <β

)
,

and the imaginary number
√
−1 is implemented as the 2× 2 matrix

√
−1 =

(
0 −1
1 0

)
.

19. Show that the nonlinear mapping

u→ F (u) ≡
(
A−
√
−1βA(b) − β2A(m)

)
u− β2f(u)

[where u ∈ (R2)N ] is linearized at the fixed vector grid function v ∈ (R2)N

by the linear mapping

u→ H(v)u ≡
(
A−
√
−1βA(b) − β2A(m) − β2A(h)(v)

)
u

(u ∈ (R2)N ).
20. Show that the nonlinear mapping

u→ F̃ (u)

(u ∈ (R2)N ) defined in Section 26.9 above is linearized at the fixed vector
grid function v ∈ (R2)N by the linear mapping

u→
(

HRR(v) HRG(v)
0 I

)
u

(u ∈ (R2)N ), where I is the identity matrix of order 2|G|.
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21. Use mathematical induction on i ≥ 0 to show that, in the Newton iteration
in Section 26.9 above,

v
(i)
G = 0

(where 0 is the 2|G|-dimensional zero vector).
22. Conclude that, in the Newton iteration in Section 26.9, the system(

HRR(v(i)) HRG(v(i))
0 I

)
x = F̃ (v(i))

is equivalent to the system(
HRR(v(i)) 0

0 I

)
x = F̃ (v(i)).

23. Write a function that takes the Helmholtz matrix as an argument and
produces the Dirichlet matrix associated with it. For the solution, see a
similar exercise at the end of Chapter 27.

24. Assume that there is a computer function ”solve()” that takes a sparse
matrix C and a right-hand-side vector r as arguments, solves the linear
system

Cx = r,

and returns the vector solution x. Use this function to implement the
Newton iteration in Section 26.8 above. The solution will be placed on
the website of the book.

25. Use the above function also to implement the Newton iteration in Section
26.9 above. The solution will be placed on the website of the book.
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Splines

In the previous chapter, we have considered polynomials that are linear in
the tetrahedron, and used them to form the matrix that linearizes a nonlinear
operator defined on RN or CN (the set of real-valued or complex-valued grid
functions). In this chapter, we extend this framework to the more difficult
case of functions that, in each tetrahedron in the mesh, can be viewed as a
polynomial of degree five. Furthermore, the functions are rather smooth: they
are continuous in the entire mesh and have continuous gradients across edges
in the entire mesh. They are therefore suitable to help extend a given grid
function defined on the individual nodes into a smooth function defined in
the entire mesh. This smooth extension is called the spline of the original grid
function [24] [32].

The values of the original grid function at the individual nodes in the mesh
may be viewed as Dirichlet conditions or data, which must be observed when
the required smooth function is sought. In fact, the spline problem discussed
below is to find a function with minimum energy (or minimal gradients and
variation) in the entire mesh, which agrees with the original values of the
original grid function (the Dirichlet data) at the individual nodes. The solution
of this problem is given below in terms of the solution to a linear system of
algebraic equations.

27.1 The Indexing Scheme

In Chapter 12, Section 12.30 above, we have seen that 10 degrees of freedom
(or values of partial derivatives that one needs to specify) are associated with
each corner of the unit tetrahedron T in Figure 12.4. This makes a total of
40 degrees of freedom for the four corners. Furthermore, two more degrees
of freedom are associated with the midpoint of each of the six edges of the
tetrahedron. Moreover, one more degree of freedom is associated with the
midpoint of each of the four sides of the tetrahedron. This makes the total
amount of 56 degrees of freedom required to specify a polynomial of degree
up to five uniquely. In fact, once the polynomial and its partial derivatives
are specified accordingly at the corners, edge midpoints, and side midpoints,

535
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the polynomial is well defined in the tetrahedron and indeed in the entire 3-d
Cartesian space.

Here, however, we are interested in the definition of the polynomial in the
tetrahedron only. In fact, in each individual tetrahedron in the mesh we may
want to define the function differently, according to the degrees of freedom
in this particular tetrahedron. This would make a piecewise polynomial func-
tion, namely, a function whose restriction to each tetrahedron in the mesh
is a polynomial of degree up to five. Furthermore, thanks to the fact that
the degrees of freedom are the same in common corners, edges, and sides of
neighbor tetrahedra in the mesh, the function would be fairly smooth.

Using the above, we extend the notion of a basis function in an individual
tetrahedron to the more general notion of a basis function defined in the entire
mesh of tetrahedra. For this, we assume that each node in the mesh has 10
degrees of freedom associated with it, each edge midpoint in the mesh has
two degrees of freedom associated with it, and each side midpoint in the mesh
has one degree of freedom associated with it. A basis function in the mesh is
obtained by specifying only one degree of freedom to be of value 1, whereas
all the others vanish.

To be more precise, we must have an indexing scheme to index the degrees
of freedom in the mesh. From the above, we have a total of

K ≡ 10|N |+ 2|E|+ |L|

degrees of freedom in the entire mesh, where N is the set of nodes in the mesh
(so |N | is the total number of nodes), E is the set of edges in the mesh (so
|E| is the total number of edges), and L is the set of sides in the mesh (so |L|
is the total number of sides).

The degrees of freedom in the entire mesh can now be indexed from 0 to
K − 1. Specifying one of them to be of value 1 whereas all the others vanish
defines uniquely a particular basis function in the mesh.

27.2 Basis Functions in the Mesh

Here we use the above indexing scheme of the degrees of freedom in the
entire mesh and the basis functions defined in each particular tetrahedron t
in it to define basis functions in the entire mesh. For this purpose, let us first
introduce some notations.

For any node i ∈ N , let 0 ≤ |i| < |N | denote its index in the list of nodes
in the mesh. Furthermore, let us write

t = (k, l,m,n),

where k, l, m, and n are the corners of t in some arbitrary order that is
determined in advance.
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Let us now use the basis functions Ri,t defined in some tetrahedron t in
Chapter 12, Sections 12.36 to define in t corresponding basis functions of the
form pn,t, using the above indexing scheme of the degrees of freedom in the
entire mesh. In fact, the new polynomial pn,t is identical to some polynomial
Ri,t; the only difference is in the index:

p10|k|+q,t = Rq,t

p10|l|+q,t = R10+q,t

p10|m|+q,t = R20+q,t

p10|n|+q,t = R30+q,t

(where q is an integer between 0 and 9). This defines 40 basis functions corre-
sponding to the first 40 basis functions in Chapter 12, Sections 12.30–12.31.

Next, we define basis functions corresponding to two normal derivatives at
the midpoint of each of the six edges of T . For this, however, we must first
index the edges in t in the list of edges in the entire mesh. Indeed, for any
edge of the form (i, j) in t (with endpoints i and j that also serve as corners
in t), let |(i, j)| denote its index in the list of edges in E (0 ≤ |(i, j)| < |E|).
With this notation, we can now define the basis functions associated with edge
midpoints in t by

p10|N |+2|(k,l)|+q,t = R40+q,t

p10|N |+2|(k,m)|+q,t = R42+q,t

p10|N |+2|(k,n)|+q,t = R44+q,t

p10|N |+2|(l,m)|+q,t = R46+q,t

p10|N |+2|(l,n)|+q,t = R48+q,t

p10|N |+2|(m,n)|+q,t = R50+q,t,

where q is either 0 or 1. Finally, let us define the four basis functions that
correspond to side midpoints. For this, however, we must first have an index
for the sides in the mesh. For every side of the form (i, j,h) in t (whose corners
i, j, and h are also corners in t), let |(i, j,h)| denote its index in the list of
sides in the mesh 0 ≤ |(i, j,h) < |L||. Then, the basis functions associated
with side midpoints are defined by

p10|N |+2|E|+|(k,l,m)|,t = R52,t

p10|N |+2|E|+|(k,l,n)|,t = R53,t

p10|N |+2|E|+|(k,m,n)|,t = R54,t

p10|N |+2|E|+|(l,m,n)|,t = R55,t.

We also say that the indices in the left-hand sides above are associated with
t, as they index degrees of freedom associated with one of the corners, edge
midpoints, or side midpoints in t. This property is denoted by
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10|k|+ q ∼ t

10|l|+ q ∼ t

10|m|+ q ∼ t

10|n|+ q ∼ t

(0 ≤ q < 10),

10|N |+ 2|(k, l)|+ q ∼ t

10|N |+ 2|(k,m)|+ q ∼ t

10|N |+ 2|(k,n)|+ q ∼ t

10|N |+ 2|(l,m)|+ q ∼ t

10|N |+ 2|(l,n)|+ q ∼ t

10|N |+ 2|(m,n)|+ q ∼ t

(0 ≤ q < 2), and

10|N |+ 2|E|+ |(k, l,m)| ∼ t

10|N |+ 2|E|+ |(k, l,n)| ∼ t

10|N |+ 2|E|+ |(k,m,n)| ∼ t

10|N |+ 2|E|+ |(l,m,n)| ∼ t.

For each fixed 0 ≤ i < K, we can use these basis functions defined in t to
define basis functions in the entire mesh M :

φi ≡
{

pi,t if i ∼ t
0 if i 6∼ t

(for every t ∈M).
From Chapter 12, Sections 12.37–12.38, it follows that φi is continuous in

M and also has a continuous gradient across the edges in M . Furthermore, φi

has the property that it has the value 1 only for one degree of freedom in M ,
that is, it takes the value 1 only for one partial derivative at one node in the
mesh or for one directional derivative at one edge midpoint or side midpoint
in the mesh. Thus, every function f that (a) is continuous in M , (b) is a
polynomial of degree five in each and every particular tetrahedron t ∈M , and
(c) has a continuous gradient across every edge in M can be written uniquely
as a sum of basis functions:

f =
K−1∑
i=0

f (i)φi,

where f (i) is the ith degree of freedom of f (the value of the corresponding
partial derivative of f at the corresponding point). Indeed, in each tetrahedron
t in the mesh, both the left-hand side and the right-hand side of the above
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equation have the same 56 degrees of freedom, hence must be identical in t.
Since this is true for every t ∈ M , they must be identical in the entire mesh
M as well.

Usually, not all the f (i)’s are available. Below we consider a problem in
which only some of them are given, and the rest should be found in an optimal
way.

27.3 The Neumann Matrix

Suppose that the values of f are given at the nodes in N . In other words,
suppose that the parameters f (i) are available only for

i = 0, 10, 20, . . . , 10(|N | − 1).

How should one specify the other K − |N | parameters f (i) (or degrees of
freedom) to have a function f that is as smooth as possible?

To answer this question, we need first to define the K×K Neumann matrix
A. The definition is analogous to the one in Chapter 26, Section 26.1. In fact,
for every 0 ≤ i, j < K, the formula in Chapter 12, Section 12.39 is used to
define the (i, j)th element in A as follows:

ai,j ≡
∫ ∫ ∫

M

∇tφj∇φidxdydz

=
∑
t∈M

∫ ∫ ∫
t

∇tφj∇φidxdydz

=
∑

t∈M, i,j∼t

∫ ∫ ∫
t

∇tpj,t∇pi,tdxdydz

=
∑

t∈M, i,j∼t

|det(St)|
∫ ∫ ∫

T

∇t(pj,t ◦ Et)S−1
t S−t

t ∇(pi,t ◦ Et)dxdydz.

This completes the definition of the Neumann matrix.
Now, in order to consider the above question, let us reorder the components

of any K-dimensional vector v so that the components

v0, v10, v20, . . . , v10(|N |−1)

appear in a second subvector vN , whereas all the other components appear in
a first subvector vQ:

v =
(

vQ

vN

)
,
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where vN is an |N |-dimensional subvector, and vQ is a (K−|N |)-dimensional
subvector. Similarly, reorder the rows and columns in A so that rows that are
indexed by

i = 0, 10, 20, . . . , 10(|N | − 1)

appear in the bottom of the matrix, and columns indexed by

j = 0, 10, 20, . . . , 10(|N | − 1)

appear in the far right of the matrix. This way, A takes the block form

A =
(

AQQ AQN

ANQ ANN

)
.

Note that, because A is symmetric,

At
NQ = AQN .

27.4 The Spline Problem

Using the above Neumann matrix A, the above problem can be reformulated
more precisely as follows [27]: find a K-dimensional vector x that minimizes
xtAx, subject to the constraint that its second subvector, xN , must agree with
the corresponding components that are available for f :

xN = fN

(Dirichlet conditions). This is the spline problem: to extend f from N to the
entire mesh M as smoothly as possible, or with as little energy as possible.

In order to solve this problem, note that, thanks to the above block formu-
lation, A can be written as the following triple product:

A =
(

AQQ AQN

ANQ ANN

)
=
(

AQQ 0
ANQ I

)(
A−1

QQ 0
0 S

)(
AQQ AQN

0 I

)
,

where I is the identity matrix of order |N |, and S is the Schur-complement
submatrix:

S ≡ ANN −ANQA−1
QQAQN .

With this representation, the spline problem takes the form: find x ∈ RK that
minimizes
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xt

(
AQQ 0
ANQ I

)(
A−1

QQ 0
0 S

)(
AQQ AQN

0 I

)
x

=
((

AQQ AQN

0 I

)
x

)t(
A−1

QQ 0
0 S

)(
AQQ AQN

0 I

)
x

=
(

AQQxQ + AQNxN

xN

)t(
A−1

QQ 0
0 S

)(
AQQxQ + AQNxN

xN

)
= (AQQxQ + AQNxN )t

A−1
QQ (AQQxQ + AQNxN ) + xt

NSxN

= (AQQxQ + AQNfN )t
A−1

QQ (AQQxQ + AQNfN ) + f t
NSfN .

27.5 The Dirichlet Matrix

Clearly, we have no control over the second term above. In oder to make
the first term as small as zero, xQ must satisfy

AQQxQ + AQNfN = 0,

where 0 is the (K−|N |)-dimensional zero vector. In other words, the solution
x must satisfy the linear system of equations(

AQQ 0
0 I

)
x =

(
−AQNfN

fN

)
.

The matrix on the left-hand side is called the Dirichlet matrix, because it is
obtained from A by using the condition xN = fN to eliminate the unknowns
in the second subvector and to replace the corresponding equations by trivial
ones.

27.6 Exercises

1. Index the edges in the mesh M as follows. Use an outer loop on the
tetrahedra in M , and an inner loop on the edges in each tetrahedron.
Consider the nonoriented graph Ĝ whose nodes are these edges. Assume
that two nodes in Ĝ are not connected in Ĝ if and only if they represent
the same edge in M . Apply the node-coloring algorithm in Chapter 19,
Section 19.8 to the nonoriented graph Ĝ. The solution can be found in
Section 28.23 in the appendix.

2. Show that the above algorithm indeed provides a proper indexing of the
edges in M .
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3. Index the sides in the mesh M as follows. Use an outer loop on the tetra-
hedra in M , and an inner loop on the sides in each tetrahedron. Consider
the nonoriented graph Ĝ whose nodes are these sides. Assume that two
nodes in Ĝ are not connected in Ĝ if and only if they represent the same
side in M . Apply the node-coloring algorithm in Chapter 19, Section 19.8
to the nonoriented graph Ĝ. The solution can be found in Section 28.24
in the appendix.

4. Show that the above algorithm indeed provides a proper indexing of the
sides in M .

5. Show that the Neumann matrix A is symmetric.
6. Conclude that the Dirichlet matrix is symmetric as well.
7. Write a constructor that produces the sparse matrix B in Chapter 12,

Section 12.31. The solution can be found in Section 28.25 in the appendix.
8. Modify the above constructor so that the first ten rows in B are reordered

in such a way that the first row corresponds to the zeroth partial derivative
(the function itself), the next three rows correspond to the first partial
derivatives (the gradient), and the next six rows correspond to the second
partial derivatives (the Hessian). Apply the same reordering also to the
next 30 rows in B, so that the ordering of degrees of freedom is the same
at the four corners of the tetrahedron. (With this ordering, the basis
functions are ready for the transformations in Chapter 12, Section 12.36.)
The solution can be found in Section 28.25 in the appendix.

9. Write a function that produces the polynomial of three variables pq from
the 56-dimensional vector x in Chapter 12, Section 12.31. The solution
can be found in Section 28.25 in the appendix.

10. Assume that there is a function ”solve()” that takes the sparse matrix
B and the right-hand side vector I(q) in Chapter 12, Section 12.31 as
arguments, solves the linear system

Bx = I(q),

and returns the vector solution x. Use this function and the code in the
previous exercises to write a constructor that produces the Neumann ma-
trix A. The solution will be placed on the website of the book.

11. Write a function that takes the Neumann matrix A and the Dirichlet data
fN and produces the Dirichlet matrix and its right-hand side −AQNfN .
The solution can be found in Section 28.26 in the appendix.

12. Let v be a K-dimensional complex vector, in which each component vi

corresponds to the ith degree of freedom in the above indexing scheme.
For each t ∈M , redefine Pt(v) in Chapter 26, Section 26.6 by

Pt(v) ≡
∑
i∼t

vipi,t ◦ Et.

Use this new definition to redefine and reconstruct the 2K×2K Helmholtz
mass matrix. The solution will be placed on the website of the book.
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Chapter 28

Appendix: Solutions of Exercises

28.1 Representation of Integers in any Base

The following code can be used to represent an integer number in any base.
In particular, when the chosen base is 2, the code is equivalent to that in
Sections 13.24–13.25 in Chapter 13.

int reverse(int n, int base){
int reversed = n%base;
while(n /= base)
reversed = reversed * 10 + n%base;

return reversed;
} // convert to base "base" and reverse

This function serves two purposes: to convert the given integer number to
base ”base”, and to write this representation in a reversed order of digits.
Unfortunately, leading zeroes get lost in the process. For example, 2300 is
reversed to 32. In order to avoid this, one must add 1 to the original number.
This extra 1 is subtracted once the original number has been reversed and
reversed again by two successive calls to the above function to transform the
original number to the required representation in base ”base”:

int changeBase(int n, int base){
int even = n%base ? 0 : 1;
return reverse(reverse(n+even,base),10)-even;

} // change base from 10 to "base"

28.2 Prime Factors

In order to have the list of prime factors of an integer number, we first write
a simple function that checks whether a number is prime or not:

int prime(int j){

543
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for (int i=2; i<j; i++)
if(j%i==0)return 0;

return 1;
} // prime or not

This function is now used in the recursion that prints the prime factors of
an integer number. Indeed, given an arbitrarily large integer number n, a
loop is used to find its smallest factor i (the smallest number that divides n).
(Clearly, i is prime.) Then, both i and n/i are factored recursively, and the
loop is terminated. (Clearly, the first recursive call only prints the prime factor
i.) The second recursive call, on the other hand, prints the prime factors of
n/i, which are indeed the required prime factors of n:

void primeFactors(int n){
if(prime(n))printf("%d ",n);
else
for(int i=2; i<n; i++)
if(n%i==0){
primeFactors(i);
primeFactors(n/i);
return;

}
} // print prime factors

This is how the above function is actually called in a program:

int main(){
int n;
scanf("%d",&n);
printf("%d is the product of ",n);

primeFactors(n);
return 0;

}

28.3 Greatest Common Divisor

Here is the code that uses recursion to implement Euclid’s algorithm to
find the greatest common divisor of the two positive integer numbers m and
n. (Without loss of generality, it is assumed that m > n.)

int GCD(int m, int n){
return m%n ? GCD(n,m%n) : n;

} // greatest common divisor
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Here is how this function is used:

int main(){
int m,n;
scanf("%d %d",&m,&n);
printf("the GCD of %d and %d is %d\n",m,n,GCD(m,n));
return 0;

}

28.4 Recursive Implementation of Ca,n

Here we use recursion to implement the function

Ca,n =
a!

(a− n)!

(where a and n are nonnegative integers satisfying a ≥ n) defined in Chapter
10, Section 10.17. The implementation can be done in two equivalent ways:
either by

int C(int a, int n){
return n ? a * C(a-1,n-1) : 1;

} // a!/(a-n)!

or by

int C(int a, int n){
return n ? (a-n+1) * C(a,n-1) : 1;

} // a!/(a-n)!

28.5 Square Root of a Complex Number

Here is the function that uses the polar representation of a given complex
number c to calculate its square root:

√
c =

√
r(cos θ + i · sin θ) =

√
r(cos(θ/2) + i · sin(θ/2)).

Here it is assumed that 0 ≤ θ < 2π, so 0 ≤ θ/2 < π. Furthermore, it is
assumed that the ”math.h” library is included in the code, so the sine (”sin”),
cosine (”cos”), arc-cosine (”acos”), and square root (”sqrt”) functions of a
real number are available.
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In order to implement the required square root function of a complex num-
ber, we first define the ”fabs” function, which returns the absolute value of a
complex number:

double fabs(const complex&c){
return sqrt(abs2(c));

} // absolute value of a complex number

The naive implementation of the square root function of a complex number
calculates θ and θ/2 explicitly:

const complex sqrt(const complex&c){
double r=fabs(c);
double theta = acos(c.re()/r);

Unfortunately, the variable ”theta” defined above is not always the same as
the original angle θ. Indeed, because the ”acos” function used above always
returns an angle between 0 and π, ”theta” is equal to θ only for 0 ≤ θ ≤ π.
For π < θ < 2π, on the other hand, ”theta” is equal to 2π − θ rather than θ.
Thus, the following substitution must be used to correct this and make sure
that ”theta” is indeed the same as θ:

if(c.im() < 0.) theta = 4. * acos(0.) - theta;

The required square root of c can now be formed and returned:

r = sqrt(r);
theta /= 2.;
return complex(r*cos(theta), r*sin(theta));

} // square root of a complex number

A more sophisticated approach, on the other hand, never calculates θ or θ/2
explicitly, avoiding using the ”sin”, ”cos”, and ”acos” functions. Instead, it
uses the cosine theorem (Chapter 5, Section 5.6) to have

cos(θ) = cos2(θ/2)− sin2(θ/2),

or, using Pythagoras’ theorem,

cos(θ) = 2 cos2(θ/2)− 1 = 1− 2 sin2(θ/2).

As a result, one can have both cos(θ/2) and sin(θ/2) in terms of cos(θ), the
real part of c:

cos(θ/2) = ±
√

1 + cos(θ)
2

and

sin(θ/2) =

√
1− cos(θ)

2
.
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Note that, in the formula for cos(θ/2) above, the plus sign should be used
for 0 ≤ θ ≤ π, whereas the minus sign should be used for π < θ < 2π. The
above formulas give rise to the following code to calculate the required

√
c:

const complex sqrt(const complex&c){
double r=fabs(c);
double cosTheta = c.re()/r;
double sign = c.im() < 0. ? -1. : 1.;
double cosTheta2 = sign * sqrt((1.+cosTheta)/2.);
double sinTheta2 = sqrt((1.-cosTheta)/2.);
r = sqrt(r);
return complex(r*cosTheta2,r*sinTheta2);

} // square root of a complex number

Unfortunately, the above definition of the square root function is discontinuous
at the positive part of the real axis. Indeed, when θ approaches 0+ (that is,
θ is positive and approaches 0 from above), θ/2 approaches 0 as well. When,
on the other hand, θ approaches 2π− (θ < 2π), θ/2 approaches π, yielding
the negative of the required square root. To avoid this problem, let us assume
that the original angle θ lies between −π and π rather than between 0 and 2π.
This way, θ/2 approaches 0 whenever θ approaches 0, regardless of whether
θ > 0 or θ < 0. As a result, the above formulas take the form

cos(θ/2) =

√
1 + cos(θ)

2

and

sin(θ/2) = ±
√

1− cos(θ)
2

,

where the plus sign in the above formula is used when θ ≥ 0, and the minus
sign is used when θ < 0. As a consequence, the definitions of ”cosTheta2” and
”sinTheta2” in the above code should be modified to read

double cosTheta2 = sqrt((1.+cosTheta)/2.);
double sinTheta2 = sign * sqrt((1.-cosTheta)/2.);

The rest of the code remains the same as before.

28.6 Operations with Vectors

Here is the detailed implementation of some arithmetic operators of the
”vector” class that have been left as exercises:
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template<class T, int N>
const vector<T,N>&
vector<T,N>::operator-=(const vector<T,N>&v){

for(int i = 0; i < N; i++)
component[i] -= v[i];

return *this;
} // subtracting a vector from the current vector

template<class T, int N>
const vector<T,N>&
vector<T,N>::operator*=(const T& a){

for(int i = 0; i < N; i++)
component[i] *= a;

return *this;
} // multiplying the current vector by a scalar

template<class T, int N>
const vector<T,N>&
vector<T,N>::operator/=(const T& a){

for(int i = 0; i < N; i++)
component[i] /= a;

return *this;
} // dividing the current vector by a scalar

template<class T, int N>
const vector<T,N>
operator-(const vector<T,N>&u, const vector<T,N>&v){
return vector<T,N>(u) -= v;

} // vector minus vector

template<class T, int N>
const vector<T,N>
operator*(const vector<T,N>&u, const T& a){
return vector<T,N>(u) *= a;

} // vector times scalar

template<class T, int N>
const vector<T,N>
operator*(const T& a, const vector<T,N>&u){
return vector<T,N>(u) *= a;

} // T times vector

template<class T, int N>
const vector<T,N>
operator/(const vector<T,N>&u, const T& a){
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return vector<T,N>(u) /= a;
} // vector divided by scalar

28.7 Operations with Matrices

Here is the implementation of the operators that add two matrices, subtract
two matrices, and multiply scalar times matrix, vector times matrix, matrix
times vector, and matrix times matrix, as declared in Chapter 16 above.

template<class T, int N, int M>
const matrix<T,N,M>&
matrix<T,N,M>::operator+=(const matrix<T,N,M>&m){
vector<vector<T,N>,M>::operator+=(m);
return *this;

} // adding a matrix

template<class T, int N, int M>
const matrix<T,N,M>&
matrix<T,N,M>::operator-=(const matrix<T,N,M>&m){
vector<vector<T,N>,M>::operator-=(m);
return *this;

} // subtracting a matrix

template<class T, int N, int M>
const matrix<T,N,M>&
matrix<T,N,M>::operator*=(const T&a){
for(int i=0; i<M; i++)
set(i,(*this)[i] * a);

return *this;
} // multiplication by scalar

template<class T, int N, int M>
const matrix<T,N,M>&
matrix<T,N,M>::operator/=(const T&a){
for(int i=0; i<M; i++)
set(i,(*this)[i] / a);

return *this;
} // division by scalar

template<class T, int N, int M>
const matrix<T,N,M>
operator*(const T&a,const matrix<T,N,M>&m){
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return matrix<T,N,M>(m) *= a;
} // scalar times matrix

template<class T, int N, int M>
const matrix<T,N,M>
operator*(const matrix<T,N,M>&m, const T&a){
return matrix<T,N,M>(m) *= a;

} // matrix times scalar

template<class T, int N, int M>
const matrix<T,N,M>
operator/(const matrix<T,N,M>&m, const T&a){
return matrix<T,N,M>(m) /= a;

} // matrix divided by scalar

template<class T, int N, int M>
const vector<T,M>
operator*(const vector<T,N>&v,const matrix<T,N,M>&m){
vector<T,M> result;
for(int i=0; i<M; i++)
result.set(i, v * m[i]);

return result;
} // vector times matrix

template<class T, int N, int M>
const vector<T,N>
operator*(const matrix<T,N,M>&m,const vector<T,M>&v){
vector<T,N> result;
for(int i=0; i<M; i++)
result += v[i] * m[i];

return result;
} // matrix times vector

template<class T, int N, int M, int K>
const matrix<T,N,K>
operator*(const matrix<T,N,M>&m1,const matrix<T,M,K>&m2){
matrix<T,N,K> result;
for(int i=0; i<K; i++)
result.set(i,m1 * m2[i]);

return result;
} // matrix times matrix

template<class T, int N, int M, int K>
const matrix<T,N,K>&
operator*=(matrix<T,N,M>&m1,
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const matrix<T,M,K>&m2){
return m1 = m1 * m2;

} // multiplying a matrix by a matrix

template<class T, int N, int M>
const matrix<T,N,M>
operator+(const matrix<T,N,M>&m1,

const matrix<T,N,M>&m2){
return matrix<T,N,M>(m1) += m2;

} // matrix plus matrix

template<class T, int N, int M>
const matrix<T,N,M>
operator-(const matrix<T,N,M>&m1,

const matrix<T,N,M>&m2){
return matrix<T,N,M>(m1) -= m2;

} // matrix minus matrix

28.8 Determinant, Inverse, and Transpose of 2× 2 Matrix

Here are some more functions that compute the determinant, inverse, and
transpose of 2× 2 matrices of class ”matrix2” in Chapter 16 above:

typedef matrix<double,2,2> matrix2;
double det(const matrix2&A){
return A(0,0)*A(1,1) - A(0,1)*A(1,0);

} // determinant of a 2 by 2 matrix

The above ”det()” function is now used to compute A−1 by Kremer’s formula:(
A0,0 A0,1

A1,0 A1,1

)−1

= det(A)−1

(
A1,1 −A0,1

−A1,0 A0,0

)
.

This formula is implemented as follows:

const matrix2 inverse(const matrix2&A){
point column0(A(1,1),-A(1,0));
point column1(-A(0,1),A(0,0));
return matrix2(column0,column1)/det(A);

} // inverse of 2 by 2 matrix

Finally, the transpose of a 2× 2 matrix is computed as follows:
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const matrix2 transpose(const matrix2&A){
return matrix2(point(A(0,0),A(0,1)),

point(A(1,0),A(1,1)));
} // transpose of 2 by 2 matrix

28.9 Determinant, Inverse, and Transpose of 3× 3 Matrix

Here are also the analogue functions that compute and return the determi-
nant, inverse, and transpose of 3×3 matrices, using the definitions in Chapter
9, Sections 9.23–9.24:

double det(const matrix3&A){
return A(0,0) * (A(1,1)*A(2,2)-A(1,2)*A(2,1))
- A(0,1) * (A(1,0)*A(2,2)-A(1,2)*A(2,0))
+ A(0,2) * (A(1,0)*A(2,1)-A(1,1)*A(2,0));

} // determinant of matrix3

const matrix3 inverse(const matrix3&A){
point3 column0(A(1,1)*A(2,2)-A(1,2)*A(2,1),

-(A(1,0)*A(2,2)-A(1,2)*A(2,0)),
A(1,0)*A(2,1)-A(1,1)*A(2,0));

point3 column1(-(A(0,1)*A(2,2)-A(0,2)*A(2,1)),
A(0,0)*A(2,2)-A(0,2)*A(2,0),

-(A(0,0)*A(2,1)-A(0,1)*A(2,0)));
point3 column2(A(0,1)*A(1,2)-A(0,2)*A(1,1),

-(A(0,0)*A(1,2)-A(0,2)*A(1,0)),
A(0,0)*A(1,1)-A(0,1)*A(1,0));

return
matrix3(column0,column1,column2)/det(A);

} // inverse of matrix3

const matrix3 transpose(const matrix3&A){
return
matrix3(point3(A(0,0),A(0,1),A(0,2)),

point3(A(1,0),A(1,1),A(1,2)),
point3(A(2,0),A(2,1),A(2,2)));

} // transpose of a matrix3
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28.10 Vector Product

Here is the function that computes and returns the vector product of two
3-d vectors, defined in Chapter 9, Section 9.25:

const point3 operator&(const point3&u,
const point3&v){

point3 i(1.,0.,0.);
point3 j(0.,1.,0.);
point3 k(0.,0.,1.);
return i * (u[1]*v[2]-u[2]*v[1])

- j * (u[0]*v[2]-u[2]*v[0])
+ k * (u[0]*v[1]-u[1]*v[0]);

} // vector product

With this operator, users can write ”u&v” to have the vector product of the
two 3-d vectors ’u’ and ’v’.

28.11 The Matrix Exponent Function

Here we rewrite the ”expTaylor” function as a template function, so it is
applicable not only to a scalar argument x to calculate exp(x) but also to a
matrix argument A to calculate exp(A). For this, however, we need first to
define a few ordinary functions.

The first function is the function that returns the l1-norm of a vector, or
the sum of the absolute value of its components:

template<class T, int N>
const T L1Norm(const vector<T,N>&v){

T sum = 0;
for(int i = 0; i < N; i++)
sum += abs(v[i]);

return sum;
} // L1 norm of a vector

The next function calculates the l1-norm of a matrix as the maximum of the
l1-norm of its columns:

template<class T, int N, int M>
const T L1Norm(const matrix<T,N,M>&m){
T maxColumn=0.;
for(int i=0; i<M; i++)
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maxColumn = max(maxColumn,L1Norm(m[i]));
return maxColumn;

} // L1 norm of a matrix

The next function returns the transpose of a matrix:

template<class T, int N, int M>
const matrix<T,M,N>
transpose(const matrix<T,N,M>&m){
matrix<T,M,N> result;
for(int i=0; i<N; i++){
vector<T,M> column;
for(int j=0; j<M; j++)
column.set(j,m(i,j));

result.set(i,column);
}
return result;

} // transpose of a matrix

The next function gives an upper bound for the l2-norm of a matrix. This
upper bound is the square root of the l1-norm of the matrix times the l1-
norm of its transpose:

template<class T, int N, int M>
const T abs(const matrix<T,N,M>&m){
return sqrt(L1Norm(m) * L1Norm(transpose(m)));

} // estimate for the L2 norm of a matrix

The function ”abs()” used in the ”expTaylor” function can now refer not only
to a scalar to give its absolute value but also to a matrix to give an estimate
for its l2-norm.

Furthermore, we also define the ordinary ”*=” operator to multiply the
current matrix by another matrix:

template<class T, int N, int M, int K> const matrix<T,N,K>&
operator*=(matrix<T,N,M>&m1,const matrix<T,M,K>&m2){
return m1 = m1 * m2;

} // current matrix times a matrix

Once this operator is defined, we are ready to rewrite the ”expTaylor” function
as a template function, with the ”double” type used in the original version
replaced by the yet unspecified type ’T’:

template <class T>
T expTaylor(const T& arg){
const int K=10;
T x=arg;
int m=0;
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while(abs(x)>0.5){
x /= 2.;
m++;

}
T sum=T(1.);

This way, if ’T’ is a matrix, then ”sum” takes initially the value of the identity
matrix I.

for(int i=K; i>0; i--){
sum *= x/double(i);

This way, if ’T’ is a matrix, then the matrix ”sum” is multiplied by the matrix
’x’ divided by the real number i. Then, the identity matrix I is added to the
matrix ”sum”, using the ”+ =” operator inherited from the base ”vector”
class:

sum += T(1.);
}
for(int i=0; i<m; i++)
sum *= sum;

return sum;
} // exponent of a ’T’

Thanks to the ”operator*=” defined above, the final loop in this code applies
not only to scalars but also to matrices. Thus, the above template function
can be used to calculate the exponent of matrices as well as the exponent of
scalars.

28.12 Operations with Dynamic Vectors

Here is the detailed implementation of some arithmetic operators of the
”dynamicVector” class that have been left as exercises (subtraction, multipli-
cation, and division by scalar, inner product, etc.):

template<class T>
const dynamicVector<T>&
dynamicVector<T>::operator-=( const dynamicVector<T>&v){

for(int i = 0; i < dimension; i++)
component[i] -= v[i];

return *this;
} // subtract a dynamicVector from the current one

template<class T>
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const dynamicVector<T>&
dynamicVector<T>::operator*=(const T& a){

for(int i = 0; i < dimension; i++)
component[i] *= a;

return *this;
} // multiply the current dynamicVector by a scalar

template<class T>
const dynamicVector<T>&
dynamicVector<T>::operator/=(const T& a){

for(int i = 0; i < dimension; i++)
component[i] /= a;

return *this;
} // divide the current dynamicVector by a scalar

template<class T>
const dynamicVector<T>
operator-(const dynamicVector<T>&u,

const dynamicVector<T>&v){
return dynamicVector<T>(u) -= v;

} // dynamicVector minus dynamicVector

template<class T>
const dynamicVector<T>
operator*(const dynamicVector<T>&u, const T& a){
return dynamicVector<T>(u) *= a;

} // dynamicVector times scalar

template<class T>
const dynamicVector<T>
operator*(const T& a, const dynamicVector<T>&u){
return dynamicVector<T>(u) *= a;

} // T times dynamicVector

template<class T>
const dynamicVector<T>
operator/(const dynamicVector<T>&u, const T& a){
return dynamicVector<T>(u) /= a;

} // dynamicVector divided by a scalar

template<class T>
T operator*(const dynamicVector<T>&u,

const dynamicVector<T>&v){
T sum = 0;
for(int i = 0; i < u.dim(); i++)
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sum += (+u[i]) * v[i];
return sum;

} // inner product

28.13 Using the Stack Object

Here is how the user can use the ”stack” class to construct a stack with
the three numbers 2, 4, and 6 in it, print it onto the screen using the ”print”
function inherited from the base ”linkedList” class, and pop the items one by
one back out of it:

int main(){
stack<int> S;
S.push(6);
S.push(4);
S.push(2);
print(S);
print(S.pop());
printf("\n");
print(S);
print(S.pop());
printf("\n");
print(S);
print(S.pop());
printf("\n");
return 0;

}

28.14 Operations with Sparse Matrices

Here is the detailed implementation of the member arithmetic operators
and functions of the ”sparseMatrix” class that have been left as exercises.

template<class T>
int sparseMatrix<T>::columnNumber() const{
int maxColumn = -1;
for(int i=0; i<rowNumber(); i++)
if(item[i])maxColumn =
max(maxColumn, item[i]->last()().getColumn());
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return maxColumn + 1;
} // number of columns

Note that the function ”columnNumber()” defined above returns the maximal
column index used in any of the rows in the matrix. This number is also the
number of columns in the matrix, provided that its last column is nonzero,
which is assumed to be the case.

The number of columns in a matrix is particularly useful to construct its
transpose. This is done in the function ”transpose()” defined later in this
section. However, one must be careful not to use this function for a matrix
whose last column is zero, or it would be dropped from the transpose matrix.

Here are some more functions defined on sparse matrices:

template<class T>
const sparseMatrix<T>&
sparseMatrix<T>::operator+=(const sparseMatrix<T>&M){
for(int i=0; i<rowNumber(); i++)
*item[i] += *M.item[i];

return *this;
} // add a sparse matrix

template<class T>
const sparseMatrix<T>&
sparseMatrix<T>::operator-=(const sparseMatrix<T>&M){
for(int i=0; i<rowNumber(); i++){
row<T> minus = -1. * *M.item[i];
*item[i] += minus;

}
return *this;

} // subtract a sparse matrix

template<class T>
const sparseMatrix<T>&
sparseMatrix<T>::operator*=(const T&t){
for(int i=0; i<rowNumber(); i++)
*item[i] *= t;

return *this;
} // multiply by T

Here are some nonmember arithmetic operators:

template<class T>
const sparseMatrix<T>
operator+(const sparseMatrix<T>&M1,

const sparseMatrix<T>&M2){
return sparseMatrix<T>(M1) += M2;
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} // matrix plus matrix

template<class T>
const sparseMatrix<T>
operator-(const sparseMatrix<T>&M1,

const sparseMatrix<T>&M2){
return sparseMatrix<T>(M1) -= M2;

} // matrix minus matrix

template<class T>
const sparseMatrix<T>
operator*(const T&t, const sparseMatrix<T>&M){
return sparseMatrix<T>(M) *= t;

} // scalar times sparse matrix

template<class T>
const sparseMatrix<T>
operator*(const sparseMatrix<T>&M, const T&t){
return sparseMatrix<T>(M) *= t;

} // sparse matrix times scalar

template<class T>
const dynamicVector<T>
operator*(const sparseMatrix<T>&M,

const dynamicVector<T>&v){
dynamicVector<T> result(M.rowNumber(),0.);
for(int i=0; i<M.rowNumber(); i++)
result(i) = M[i] * v;

return result;
} // matrix times vector

Here is the implementation of some friend functions of the ”sparseMatrix”
class. The ”operator*” function returns the product of two sparse matrices.
(The calculation uses the algorithm described in Chapter 20.)

template<class T>
const sparseMatrix<T>
operator*(const sparseMatrix<T>&M1,

const sparseMatrix<T>&M2){
sparseMatrix<T> result(M1.rowNumber());
for(int i = 0; i < M1.rowNumber(); i++){
result.item[i] =

new row<T>(M1.item[i]->getValue() *
*M2.item[M1.item[i]->getColumn()]);

for(const row<T>* runner =
(const row<T>*)M1.item[i]->readNext();
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runner; runner =
(const row<T>*)runner->readNext()){

row<T> r =
runner->getValue() *
*M2.item[runner->getColumn()];

*result.item[i] += r;
}

}
return result;

} // matrix times matrix

Furthermore, the ”transpose” function returns the transpose of a sparse ma-
trix:

template<class T>
const sparseMatrix<T>
transpose(const sparseMatrix<T>&M){
sparseMatrix<T> Mt(M.columnNumber());
for(int i=0; i<M.rowNumber(); i++)
for(const row<T>* runner = M.item[i]; runner;

runner = (const row<T>*)runner->readNext()){
if(Mt.item[runner->getColumn()])
Mt.item[runner->getColumn()]->

append(runner->getValue(),i);
else
Mt.item[runner->getColumn()] =

new row<T>(runner->getValue(),i);
}

return Mt;
} // transpose of sparse matrix

Note that the matrix ’M’ that is passed (by reference) as an argument to the
”transpose()” function above is assumed to have a nonzero last column, so the
function ”columnNumber()” indeed returns its correct number of columns, to
serve as the number of rows in its transpose matrix.

28.15 Three-Dimensional Mesh

Here is how the unit cube can be covered by a mesh of six disjoint tetrahe-
dra. First, the eight corners of the unit cube are defined as node objects:

main(){
node<point3> a000(point3(0,0,0));
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node<point3> a100(point3(1,0,0));
node<point3> a010(point3(0,1,0));
node<point3> a001(point3(0,0,1));
node<point3> a011(point3(0,1,1));
node<point3> a111(point3(1,1,1));
node<point3> a101(point3(1,0,1));
node<point3> a110(point3(1,1,0));

Now, these nodes are used to form the six required tetrahedra. Note that,
once a node has been used in a tetrahedron, it is referred to as a vertex in
that tetrahedron, rather than by its original name, which refers to a dangling
node that belongs to no tetrahedron as yet.

tetrahedron t1(a000,a100,a010,a001);
tetrahedron t2(a111,a011,a101,a110);
tetrahedron t3(t2(1),t2(2),t1(1),t2(3));
tetrahedron t4(t2(1),t1(2),t1(1),t2(3));
tetrahedron t5(t2(1),t2(2),t1(1),t1(3));
tetrahedron t6(t2(1),t1(2),t1(1),t1(3));

Next, the constructor of the ”mesh” class is called to form a mesh ’m’ with
only one tetrahedron, ”t1”. Then, the rest of the tetrahedra, ”t2”, ”t3”, ”t4”,
”t5”, and ”t6” are appended to it one by one, to form the required mesh of
six tetrahedra that covers the entire unit cube.

mesh<tetrahedron> m(t1);
m.append(t2);
m.append(t3);
m.append(t4);
m.append(t5);
m.append(t6);

Once the tetrahedra have been placed in the mesh ’m’, the original tetrahedra
referred to as t1, t2, . . ., t6 can be removed. This way, the ”sharingCells” fields
in their vertices only count the cells in ’m’ that share them, but not the original
dangling tetrahedra ”t1”, . . ., ”t6”.

t1.~tetrahedron();
t2.~tetrahedron();
t3.~tetrahedron();
t4.~tetrahedron();
t5.~tetrahedron();
t6.~tetrahedron();

The mesh ’m’ is now ready for a refinement step. The finer mesh is then
printed onto the screen:
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m.refine();
print(m);
return 0;

}

28.16 Integrals over the Tetrahedron

The following code defines the nodal basis functions in the tetrahedron,
that is, the polynomials of three variables that have the value 1 at one corner
of the tetrahedron and 0 at the three other corners:

p0(x, y, z) = 1− x− y − z

p1(x, y, z) = x

p2(x, y, z) = y

p3(x, y, z) = z.

int main(){
polynomial<double> zero(1,0.);
polynomial<polynomial<double> > Zero(1,zero);
polynomial<double> one(1,1.);
polynomial<polynomial<double> > One(1,one);
polynomial<double> minus1(1,-1.);
polynomial<polynomial<double> > Minus1(1,minus1);
polynomial<double> oneMinusx(1.,-1.);
polynomial<polynomial<double> >

oneMinusxMinusy(oneMinusx,minus1);
polynomial<polynomial<double> > yy(zero,one);
polynomial<double> x1(0.,1.);
polynomial<polynomial<double> > xx(1,x1);

Note that ”x1” and ”xx” are different kinds of polynomials: ”x1” is the 1-
d polynomial p(x) = x, whereas ”xx” is the 2-d polynomial p(x, y) = x,
which doesn’t depend on y at all. Similarly, ”xxx” is the 3-d polynomial
p(x, y, z) = x, which depends neither on y nor on z:

polynomial<polynomial<polynomial<double> > >
xxx(1,xx);

list<polynomial<polynomial<polynomial<double> > > >
P(4,xxx);

P(0) = polynomial<polynomial<
polynomial<double> > >(oneMinusxMinusy,Minus1);

P(2) = polynomial<polynomial<
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polynomial<double> > >(1,yy);
P(3) = polynomial<polynomial<
polynomial<double> > >(Zero, One);

This completes the definition of the nodal basis functions p0, p1, p2, and p3.
These definitions are now used to calculate the integral over the tetrahedron
of the triple products of three nodal basis functions:

print(integral(P[0]*P[1]*P[2]));
printf("\n");
print(integral(P[1]*P[2]*P[3]));
printf("\n");
print(integral(P[2]*P[3]*P[0]));
printf("\n");
print(integral(P[3]*P[0]*P[1]));
printf("\n");
return 0;

}

28.17 Computing Partial Derivatives

Here we define the function that computes and returns the kth derivative
of its polynomial argument. For this, we use the function ”C()” defined in
Section 28.4.

template<class T>
const polynomial<T>
d(const polynomial<T>&p, int k){
if(k>p.degree())
return polynomial<T>(1,0.);

Clearly, if k is larger than the degree of the polynomial, then the zero poly-
nomial is returned, and the function terminates. If, on the other hand, k is
smaller than or equal to the degree of the polynomial, then the kth derivative
is returned in the polynomial object ”dp”:

polynomial<T> dp(p.degree()+1-k,0.);
for(int n=0; n<=dp.degree(); n++)
dp(n) = C(n+k,k) * p[n+k];

return dp;
} // kth derivative

The above function is now used to compute the (j, k)th partial derivative of
a polynomial of two variables:
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template<class T>
const polynomial<polynomial<T> >
d(const polynomial<polynomial<T> >&p, int j, int k){
polynomial<T> zero(1,0.);
if(k>p.degree())
return polynomial<polynomial<T> >(1,zero);

Note that here ”p.degree()” is not the degree of p in the usual sense but
rather the largest y-power in p =

∑
n an(x)yn. Clearly, if k is larger than this

number, then the zero polynomial is returned and the function terminates.
Otherwise, the function proceeds to calculate the (j, k)th partial derivative,
using the previous function to calculate the jth derivative of the an(x)’s:

polynomial<polynomial<T> > dp(p.degree()+1-k,zero);
for(int n=0; n<=dp.degree(); n++)
dp(n) = C(n+k,k) * d(p[n+k],j);

return dp;
} // (j,k)th partial derivative

Finally, the following function uses the previous function to calculate the
(i, j, k)th partial derivative of a polynomial of three variables:

template<class T>
const polynomial<polynomial<polynomial<T> > >
d(const polynomial<polynomial<polynomial<T> > >&p,

int i, int j, int k){
polynomial<T> zero(1,0.);
polynomial<polynomial<T> > Zero(1,zero);
if(k>p.degree())
return polynomial<polynomial<polynomial<T> > >(1,Zero);

Again, here ”p.degree()” is the largest z-power in p =
∑

n an(x, y)zn. Clearly,
if k is larger than this number, then the zero polynomial is returned and
the function terminates. Otherwise, the function proceeds to calculate the
(i, j, k)th partial derivative, using the previous function to calculate the (i, j)th
partial derivative of the an’s:

polynomial<polynomial<polynomial<T> > >
dp(p.degree()+1-k,Zero);

for(int n=0; n<=dp.degree(); n++)
dp(n) = C(n+k,k) * d(p[n+k],i,j);

return dp;
} // (i,j,k)th partial derivative
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28.18 Composing Sparse Polynomials

Here we use the ”operator()” function in Chapter 25, Section 25.7 to pro-
duce the composition p ◦ q of two given sparse polynomials p(x) and q(x).
This is done as follows. First, p =

∑
aix

i is transformed into the dummy
polynomial of ”two” variables

p2(x, y) =
∑

i

ai(x)yi,

with the trivial coefficients
ai(x) ≡ ai

that actually do not depend on x whatsoever. Then, the original ”operator()”
function is applied to this dummy polynomial to compute its polynomial value
at the fixed argument y = q:

p2(x, q) =
∑

aiq
i = p ◦ q.

template<class T>
const sparsePolynomial<T>
operator&(const sparsePolynomial<T>&p,

const sparsePolynomial<T>&q){
sparsePolynomial<T> first(p.getValue(),0);
sparsePolynomial<sparsePolynomial<T> >

p2(first,p.getPower());

By now, the dummy polynomial of two variables ”p2” contains one monomial
only, the first monomial in the original polynomial ’p’. Next, a loop on the
rest of the monomials in ’p’ is used to construct the trivial polynomials

ai(x) = aix
0

and append them one by one to ”p2” as well:

if(p.readNext())
for(const sparsePolynomial<T>* runner =

(const sparsePolynomial<T>*)p.readNext();
runner;
runner = (const sparsePolynomial<T>*)
runner->readNext()){

sparsePolynomial<T> coef((*runner).getValue(),0);
p2.append(coef,(*runner).getPower());

}
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Finally, the original ”operator()” is invoked to return the required polynomial

p2(x, q) =
∑

i

aiq
i = p ◦ q

(where x is actually immaterial):

return p2(q);
} // compose p&q

28.19 Calculations with Sparse Polynomials

Here is how sparse polynomials are defined and used:

main(){
sparsePolynomial<double> p(monomial<double>(1.,1));

This command line constructs the temporary monomial x, and then uses it to
construct the sparse polynomial p(x) = x. The cubic term 2x3 is then added
to this polynomial by the ”append()” function:

monomial<double> mon(2.,3);
p.append(mon);

Note that, as defined in the linked-list class, the ”append()” function takes
a nonconstant argument. (This is done on purpose to enable the derivation
of the mesh object, which may change the cell objects appended to it by
increasing the ”sharingCells” fields in their nodes.) As a consequence, tempo-
rary unnamed objects cannot be passed to it as arguments, out of fear that
they would be changed throughout it, which makes no sense. This is why the
well-named monomial ”mon” is defined above and passed as an argument to
the ”append()” function.

At this stage, the sparse polynomial p takes its final form

p(x) = x + 2x3.

The sparse polynomials p and p2 are then printed to the screen, using the
”operator*” function to multiply sparse polynomials and the ”print” function
inherited from the base linked-list class:

print(p);
print(p * p);

Furthermore, the ”operator()” member function of the sparse-polynomial class
is invoked with ’S’ being interpreted as the ”double” type to calculate p(3):

© 2009 by Taylor and Francis Group, LLC



28.19. CALCULATIONS WITH SPARSE POLYNOMIALS 567

print(p(3.));

Furthermore, the ”operator&” of the previous section is used to compute and
print the polynomial p ◦ p:

print(p&p);

Finally, we check that

p(p(p(x))) = (p ◦ p ◦ p)(x).

The left-hand side is calculated by three applications of the ”operator()” func-
tion. The right-hand side, on the other hand, is calculated by two applications
of the ”operator&” function to calculate the composition p ◦ p ◦ p, followed by
one application of ”operator()” to calculate (p ◦ p ◦ p)(x).

print(p(p(p(1.))));
print((p&p&p)(1.));

Note that ”p&p&p” above returns a temporary sparse-polynomial object that
contains the composition p ◦ p ◦ p. Thanks to the fact that ”operator()” is
declared as a constant member function that cannot change its current sparse-
polynomial object, it can be safely applied to this temporary object, with no
fear that it may change throughout the execution of the function. This is why
”p&p&p” can be safely passed as the current argument of the ”operator()”
function to calculate the required value.

The above polynomial ’p’ can now be used as a monomial in the polynomial
of two variables

p2(x, y) = (x + 2x3)y + (x + 2x3)y3 :

monomial<sparsePolynomial<double> > mon2(p,1);
monomial<sparsePolynomial<double> > mon3(p,3);
sparsePolynomial<sparsePolynomial<double> >
p2(mon2);

p2.append(mon3);

This implementation can now be used to calculate and print p2(2, 3) simply
by writing

print(p2(2.,3.));
return 0;

}
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28.20 The Stiffness Matrix

Here we implement the constructor that takes a 3-d mesh as an argument
and produces the stiffness matrix A(s) defined in Chapter 26, Sections 26.1–
26.3. (For simplicity, we assume that α = 1 there.) It is assumed that the
mesh M covers the unit cube (as in Section 28.15 above), and that b contains
five sides of this cube:

b = {(x, y, z) | (1− x)y(1− y)z(1− z) = 0} .

Furthermore, it is also assumed that at least one refinement step has been
applied to M , so the triangles that cover the bottom side of the cube are not
too big. This guarantees that these triangles are indeed excluded from b and
do not contribute to A(b), as we’ll see in the code below.

template<class T>
sparseMatrix<T>::sparseMatrix(

mesh<tetrahedron>&m){
item = new row<T>*[number = m.indexing()];

Because the ”sparseMatrix” class is derived from a list of rows, it inherits the
field ”item”, which is an array of pointers to ”row” objects. In the above code
line, this array is set to contain |N | pointers to rows, where |N |, the number
of nodes in the mesh, is returned from the ”indexing” function applied to the
”mesh” argument ’m’.

Next, we define an |N |-dimensional vector of integers, to indicate whether
a particular node in the mesh is a boundary node or not:

dynamicVector<int> boundary(number,0);

This |N |-dimensional vector (or grid function) is initialized to zero. Later on,
it will take the value 1 at indices i corresponding to boundary nodes i ∈ b.

for(int i=0; i<number; i++)
item[i] = 0;

point3 gradient[4];
gradient[0] = point3(-1,-1,-1);
gradient[1] = point3(1,0,0);
gradient[2] = point3(0,1,0);
gradient[3] = point3(0,0,1);
for(const mesh<tetrahedron>* runner = &m;
runner;
runner =
(const mesh<tetrahedron>*)runner->readNext()){
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We have just entered the loop over the tetrahedra of the form t ∈ M . The
pointer ”runner”, which points to the rest of the tetrahedra in the mesh, is
converted explicitly from a mere pointer to a linked list of tetrahedra to a
pointer to a concrete mesh of tetrahedra. This way, one can refer not only to
the first tetrahedron in the “tail” of the linked list by writing ”(*runner)()”
[invoking the ”operator()” of the underlying linked-list object] but also to
member functions of the derived ”mesh” class as well.

Next, the 3× 3 matrix St is defined:

matrix3
S((*runner)()[1]() - (*runner)()[0](),
(*runner)()[2]() - (*runner)()[0](),
(*runner)()[3]() - (*runner)()[0]());

matrix3 Sinverse = inverse(S);
matrix3 weight =
fabs(det(S)/6.) *

Sinverse * transpose(Sinverse);
for(int i=0; i<4; i++){
int I = (*runner)()[i].getIndex();

We have just entered the inner loop, which runs on the corners i of the tetrahe-
dron t pointed at by ”runner”. For each corner i encountered in this inner loop,
the integer ’I’ denotes its index i in the list of nodes N . Then, it is checked
whether i is a boundary point in b. If it is, then it sets the corresponding
component in the dynamic vector ”boundary” to 1:

if(((*runner)()[i]()[0] >= 1. - 1.e-6)
||((*runner)()[i]()[1] <= 1.e-6)
||((*runner)()[i]()[1] >= 1. - 1.e-6)
||((*runner)()[i]()[2] <= 1.e-6)
||((*runner)()[i]()[2] >= 1. - 1.e-6))

boundary(I) = 1;
}
for(int i=0; i<4; i++){
int I = (*runner)()[i].getIndex();
for(int j=0; j<4; j++){
int J = (*runner)()[j].getIndex();

We have just entered the double nested loop on the corners of the tetrahedron
t, pointed at by ”runner”. The indices ’I’ and ’J’ stand for the indices i and
j used in Chapter 26, Section 26.1, to index the corners i and j. Thus, we
actually compute the contribution to the (’I’,’J’)th element in A from the
tetrahedron t. For this, we distinguish between two cases: if the ’I’th row in
the constructed matrix already exists, then this contribution has just to be
added to it:

if(item[I]){
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row<T>
r(gradient[j]*weight*gradient[i],J);

*item[I] += r;
}

If, on the other hand, this is the first contribution ever to the ’I’th row, then
it must be constructed using the ”new” command:

else
item[I] = new
row<T>(gradient[j]*weight*gradient[i],J);

Next, we also add the potential contributions from the tetrahedron t to the
boundary matrix A(b), the second term in the stiffness matrix A(s). This is
done by a yet inner loop on the corners of the form k ∈ t, which, together
with the corners i and j looped upon in the outer loops, make a triangle of
the form 4(i, j,k) ∈ b:

for(int k=0; k<4; k++){
int K = (*runner)()[k].getIndex();
if((i!=j)&&(j!=k)&&(k!=i)
&&boundary[I]
&&boundary[J]
&&boundary[K]){

This ”if” question makes sure that 4(i, j,k) is indeed a boundary triangle in
b. The contribution from it to the (’I’,’J’)th element in A(b) is now calculated,
using the vector-product operator in Section 28.10 above:

point3 jMinusi =
(*runner)()[j]() - (*runner)()[i]();

point3 kMinusi =
(*runner)()[k]() - (*runner)()[i]();

T boundaryTerm =
l2norm(jMinusi&kMinusi) / 24.;

row<T> boundaryTermJ(boundaryTerm,J);
*item[I] += boundaryTermJ;

The same contribution to the (’I’,’J’)th element in A(b) must also go to the
corresponding main-diagonal element, that is, to the (’I’,’I’)th element in A(b):

row<T> boundaryTermI(boundaryTerm,I);
*item[I] += boundaryTermI;

}
}

}
}

}
} // constructing the stiffness matrix
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This completes the construction of the stiffness matrix A(s) with α = 1.

28.21 Newton’s Mass Matrix

Here we implement the constructor that takes four arguments (by refer-
ence): the mesh ’m’, the list of four polynomials ”P[0]”, ”P[1]”, ”P[2]”, and
”P[3]” of Section 28.16 above, the fixed grid function v, and its image under
the nonlinear function f , f(v). Actually, the dynamic vector f passed to the
constructor is initially the zero vector; it takes its desired value f(v) during
the execution of the constructor. This is why it must be passed to it by ref-
erence: this way, the required value f(v) is indeed saved. The main output of
the constructor, however, is the sparse matrix that contains Newton’s mass
matrix, A(n)(v).

template<class T>
sparseMatrix<T>::sparseMatrix(mesh<tetrahedron>&m,

const
list<polynomial<polynomial<polynomial<T> > > >&P,
const dynamicVector<T>&v, dynamicVector<T>&f){

item = new row<T>*[number = m.indexing()];
f = dynamicVector<T>(number,0.);
for(int i=0; i<number; i++)
item[i] = 0;

polynomial<T> zero(1,0.);
polynomial<polynomial<T> > Zero(1,zero);

The loop below runs over all the tetrahedra of the form t = (k, l,m,n) in the
mesh:

for(const mesh<tetrahedron>* runner = &m;
runner;
runner =
(const mesh<tetrahedron>*)runner->readNext()){

matrix3 S((*runner)()[1]() - (*runner)()[0](),
(*runner)()[2]() - (*runner)()[0](),
(*runner)()[3]() - (*runner)()[0]());

This defines the 3×3 matrix St. The 3-d polynomial ’V’ defined below is first
set to zero, and then is reset to its desired value vkPk,t+vlPl,t+vmPm,t+vnPn,t

in an inner loop over the corners in the tetrahedron t pointed at by ”runner”.
The 3-d polynomials Pk,t, Pl,t, Pm,t, and Pn,t used in this sum are stored in the
3-d polynomial objects ”P[0]”, ”P[1]”, ”P[2]”, and ”P[3]” that are calculated
in Section 28.16 above and passed to the present constructor by reference in
the list of polynomials ’P’.
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polynomial<polynomial<polynomial<T> > >
V(1,Zero);

for(int i=0; i<4; i++){
int I = (*runner)()[i].getIndex();
V += v[I] * P[i];

}
polynomial<polynomial<polynomial<T> > >

V2 = V * V;
polynomial<polynomial<polynomial<T> > >

V3 = V2 * V;
T detS = fabs(det(S));
for(int i=0; i<4; i++){
int I = (*runner)()[i].getIndex();
f(I) += detS * integral(V3 * P[i]);
for(int j=0; j<4; j++){
int J = (*runner)()[j].getIndex();
T Jacobian =
detS * 3. * integral(V2 * P[i] * P[j]);

if(item[I]){
row<T> JacobianJ(Jacobian,J);
*item[I] += JacobianJ;

}
else
item[I] = new row<T>(Jacobian,J);

}
}

}
} // constructing Newton’s mass matrix

This completes the construction of Newton’s mass matrix A(n)(v) at the given
grid function v. As a byproduct, f(v) is also computed, and stored in the
dynamic vector f that is passed to the constructor by reference.

28.22 Helmholtz Mass Matrix

Here is the constructor that produces Helmholtz mass matrix A(h)(v), where
v is a given vector grid function in (R2)N . As a byproduct, the constructor
also produces the vector grid function f(v) ∈ (R2)N , the image of v under
f . This output is saved in the argument ’f’; thanks to the fact that this is a
nonconstant dynamic vector [with 2-d vector components to store f(v)i ∈ R2]
that is passed by reference, the output f(v) is indeed saved in it for further
use.
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It is assumed that the user should call this constructor with ’T’ being
”matrix2”, to store the required 2× 2 blocks A

(h)
i,j .

template<class T>
sparseMatrix<T>::sparseMatrix(mesh<tetrahedron>&m,

const
list<polynomial<polynomial<polynomial<double> > > >&P,
const dynamicVector<point>&v,
dynamicVector<point>&f){

item = new row<T>*[number = m.indexing()];
f = dynamicVector<point>(number,0.);
for(int i=0; i<number; i++)
item[i] = 0;

polynomial<double> zero(1,0.);
polynomial<polynomial<double> > Zero(1,zero);
for(const mesh<tetrahedron>* runner = &m;

runner;
runner =
(const mesh<tetrahedron>*)runner->readNext()){

polynomial<polynomial<polynomial<double> > >
ReV(1,Zero);

polynomial<polynomial<polynomial<double> > >
ImV(1,Zero);

matrix3 S((*runner)()[1]() - (*runner)()[0](),
(*runner)()[2]() - (*runner)()[0](),
(*runner)()[3]() - (*runner)()[0]());

for(int i=0; i<4; i++){
int I = (*runner)()[i].getIndex();

In this loop, ”ReV” is assigned the real part of the 3-d polynomial

Pt(v) = vkPk,t + vlPl,t + vmPm,t + vnPn,t.

For example, to add the term <vkPk,t contributed from the first corner in the
tetrahedron t, the loop uses the index ’i’= 0. For this index, ’I’ contains the
index k of the node k in the list of nodes in N . Thus, ”v[I]” is the point object
that stores the two numbers

(<vk,=vk).

The first of these numbers, stored in ”v[I][0]”, is used to add the required term
to ”ReV” to form <Pt(v). The second number, stored in ”v[I][1]”, is then used
to add the required term to ”ImV” to form =Pt(v):

ReV += v[I][0] * P[i];
ImV += v[I][1] * P[i];

}
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Once the 3-d polynomial objects ”ReV” and ”ImV” that store the real and
imaginary parts of the complex-valued 3-d polynomial Pt(v) have been prop-
erly defined, their powers can be defined as well for future use:

polynomial<polynomial<polynomial<double> > >
Re2V = ReV * ReV;

polynomial<polynomial<polynomial<double> > >
Im2V = ImV * ImV;

polynomial<polynomial<polynomial<double> > >
Re2VplusIm2V = Re2V + Im2V;

polynomial<polynomial<polynomial<double> > >
threeRe2VplusIm2V = 3. * Re2V + Im2V;

polynomial<polynomial<polynomial<double> > >
Re2VplusThreeIm2V = Re2V + 3. * Im2V;

polynomial<polynomial<polynomial<double> > >
twoReVImV = 2. * ReV * ImV;

double detS = fabs(det(S));
for(int i=0; i<4; i++){
int I = (*runner)()[i].getIndex();

These polynomials are now used to add the contribution from the tetrahedron
t to the real and imaginary parts of f(v)i for any corner i:

f(I) += detS *
point(integral(Re2VplusIm2V * ReV * P[i]),

integral(Re2VplusIm2V * ImV * P[i]));

Furthermore, they are also used to compute the contribution from t to the
2× 2 block (A(h)(v))i,j for any two corners i and j:

for(int j=0; j<4; j++){
int J = (*runner)()[j].getIndex();
point
J1(integral(threeRe2VplusIm2V * P[i] * P[j]),

integral(twoReVImV * P[i] * P[j]));
point J2(integral(twoReVImV * P[i] * P[j]),
integral(Re2VplusThreeIm2V * P[i] * P[j]));

T Jacobian(J1,J2);
if(item[I]){
row<T> JacobianJ(detS * Jacobian,J);
*item[I] += JacobianJ;

}
else
item[I] = new row<T>(detS * Jacobian,J);

}
}

}
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} // constructing Helmholtz mass matrix

28.23 Indexing the Edges in the Mesh

Here we give each of the six edges in each tetrahedron in the mesh an index
to indicate its place in the list of edges in the entire mesh. More precisely,
each edge is given two consecutive indices to index the two degrees of freedom
associated with the two normal derivatives at its midpoint in the list of degrees
of freedom in the entire mesh.

For this purpose, every tetrahedron must contain an array of 56 integers to
store the indices of its degrees of freedom in the list of degrees of freedom in
the entire mesh. For this, the block of the ”cell” class must be modified as
follows:

template<class T, int N> class cell{
node<T>* vertex[N];
int index[56];

public:
int readMeshIndex(int i) const{
return index[i];

} // read-only the indices

int& meshIndex(int i){
return index[i];

} // read/write the indices

...

This way, the private array ”index” that contains 56 integers is added to each
”cell” object, along with the public functions ”readMeshIndex” (to read the
entries in it) and ”meshIndex” (to read/write the entries in it). The array
”index” will contain the indices assigned to the degrees of freedom in the
current tetrahedron to indicate their place in the list of degrees of freedom in
the entire mesh.

It is also a good idea to initialize the entries in the above ”index” array to
their default value −1 by adding at the end of the constructors of the ”cell”
class the following loop:

for(int i=0; i<56; i++)
index[i] = -1;

Similarly, one should better add at the end of the copy constructor and the
assignment operator of the ”cell” class the loop:
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for(int i=0; i<56; i++)
index[i] = e.index[i];

More meaningful indices should be assigned to the ”cell” object only once
it has been embedded in a complete mesh. This is why the ”edgeIndexing”
function that assigns these indices must be a member of the ”mesh” class, so
it is applied to a current ”mesh” object. This is why this function must first
be declared in the block of the ”mesh” class:

int edgeIndexing(int);

Here is how this function is actually defined. The function takes the integer
argument ”nodes” that stores the total number of nodes in the mesh.

template<class T>
int mesh<T>::edgeIndexing(int nodes){
int edges = 0;

The integer variable ”edges” counts the edges in the mesh. Now, the tetrahedra
in the mesh are scanned in an outer loop:

for(mesh<T>* runner = this; runner;
runner=(mesh<T>*)runner->next){

First, each vertex in each tetrahedron encountered in this loop must be as-
signed ten entries in the array ”index” to store the indices of the ten degrees
of freedom associated with it in the list of degrees of freedom in the entire
mesh. Fortunately, these vertices are already indexed in the list of nodes in
the entire mesh. In fact, the index of each vertex in the list of nodes in the
entire mesh can be read by the public ”getIndex” function in the ”node” class:

for(int i=0; i<10; i++){
runner->item.meshIndex(i) =
10 * runner->item[0].getIndex() + i;

runner->item.meshIndex(10+i) =
10 * runner->item[1].getIndex() + i;

runner->item.meshIndex(20+i) =
10 * runner->item[2].getIndex() + i;

runner->item.meshIndex(30+i) =
10 * runner->item[3].getIndex() + i;

}

Furthermore, in each tetrahedron encountered in the above outer loop, the six
edges can be scanned in a nested inner loop as follows. Let the four vertices of
the tetrahedron be indexed by the numbers 0, 1, 2, 3. Then, the edges of the
tetrahedron can be denoted by

(0, 1), (1, 2), (2, 3), (3, 0), (0, 2), and (1, 3).
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In other words, these six edges can be represented by

(i, i + 1 mod 4) (0 ≤ i < 4)

and
(i, i + 2) (0 ≤ i < 2).

This notation is indeed used in the following nested loop, in which the variable
”increment” contains the difference j − i (which is either 1 or 2) between the
nodes that form the edge (i, j):

int I = -1;
for(int increment=1; increment<=2; increment++)
for(int i=0; i+2*increment<6; i++){
I++;

Here the integer variable ’I’= 0, 1, 2, 3, 4, 5 counts the edges in the current
tetrahedron encountered in the outer loop. Furthermore, the integer variable
’j’ defined below represents the second node in an edge of the form (i, j):

int j = (i+increment) % 4;

Next, we scan all the previous tetrahedra in the mesh to check whether the
current edge (i, j) has already been indexed in any of them:

for(mesh<T>* previous = this;
previous&&(previous != runner)
&&(runner->item.readMeshIndex(40+2*I) < 0);
previous=(mesh<T>*)previous->next){

To check this, we use the ”operator<” of the ”cell” class that checks whether
a given node indeed serves as a vertex in a given cell:

int ni = runner->item[i] < previous->item;
int nj = runner->item[j] < previous->item;
if(ni&&nj){
ni--;
nj--;

If both nodes i and j are indeed shared by a previous tetrahedron in the mesh,
then the current edge can also be denoted by (i, j) = (ni, nj), where ”ni” and
”nj” are the indices of these nodes in the list of four vertices in that previous
tetrahedron. Furthermore, we can find the index 0 ≤ J < 6 of (ni, nj) in the
list of six edges in that previous tetrahedron:

int J = (ni+1) % 4 == nj ?
ni

:
(nj+1) % 4 == ni ?
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nj
:
ni+2 == nj ?
ni+4

:
nj+4;

The index ’J’ of (ni, nj) in the list of six edges in the previous tetrahedron is
now being used to assign the index of (ni, nj) in the list of edges in the entire
mesh to (i, j) as well:

runner->item.meshIndex(40+2*I)
= previous->item.readMeshIndex(40+2*J);

runner->item.meshIndex(40+2*I+1)
= previous->item.readMeshIndex(40+2*J+1);

}
}

If, however, no previous tetrahedron that shares the edge (i, j) has been found,
then this edge must be assigned a new index in the list of edges in the mesh,
and the edge counter ”edges” must be incremented by 1:

if(runner->item.readMeshIndex(40+2*I) < 0){
runner->item.meshIndex(40+2*I) =

10 * nodes + 2 * edges;
runner->item.meshIndex(40+2*I+1) =

10 * nodes + 2 * edges++ + 1;
}

}
}

Finally, the function also returns the total number of edges in the mesh:

return edges;
} // indexing the edges in the mesh

This completes the edge indexing in the entire mesh.

28.24 Indexing the Sides in the Mesh

A similar function, named ”sideIndexing”, is used to index the sides in the
entire mesh. First, the function is declared in the block of the ”mesh” class:

int sideIndexing(int, int);
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Here is how this function is actually defined. The function takes two integer
arguments that store the total numbers of nodes and edges in the entire mesh.

template<class T>
int mesh<T>::sideIndexing(int nodes, int edges){
int sides = 0;

The integer variable ”sides” counts the sides in the mesh. As in the previous
section, an outer loop is used to scan the tetrahedra in the mesh:

for(mesh<T>* runner = this; runner;
runner=(mesh<T>*)runner->next){

For each tetrahedron encountered in this loop, the four vertices can be de-
noted by 0, 1, 2, 3. With this notation, the four sides in the tetrahedron can
be ordered by

(0, 1, 2), (1, 2, 3), (2, 3, 0), (3, 0, 1).

The following inner loop scans these sides. Each side encountered in this loop
is denoted by (i, j, k), where i, j, and k are some vertices in the current
tetrahedron under consideration.

for(int i=0; i<4; i++){
int j = (i+1) % 4;
int k = (i+2) % 4;

Now, a yet inner loop is used to scan the previous tetrahedra in the mesh
to check whether the current side (i, j, k) has already been indexed in any of
them:

for(mesh<T>* previous = this;
previous&&(previous != runner)
&&(runner->item.readMeshIndex(40+2*6+i) < 0);
previous=(mesh<T>*)previous->next){

To check this, the ”operator<” of the ”cell” class is invoked to check whether
i, j, and k are indeed shared by any previous tetrahedron:

int ni = runner->item[i] < previous->item;
int nj = runner->item[j] < previous->item;
int nk = runner->item[k] < previous->item;

In this case, the current side can also be written as (i, j, k) = (ni, nj, nk),
where ni, nj, and nk are vertices in that previous tetrahedron. Furthermore,
we can identify the fourth vertex ”nl” in that previous tetrahedron, which lies
across from the side (ni, nj, nk):
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if(ni&&nj&&nk){
ni--;
nj--;
nk--;
int nl = 0;
while((nl==ni)||(nl==nj)||(nl==nk))
nl++;

This fourth vertex, ”nl”, can now be used to identify the index ’J’ of
(ni, nj, nk) in the list of four sides in that previous tetrahedron:

int J = (nl+1) % 4;

The side index ’J’ is now being used to assign the index of (ni, nj, nk) in the
list of sides in the entire mesh to (i, j, k) as well:

runner->item.meshIndex(40+2*6+i)
= previous->item.readMeshIndex(40+2*6+J);

}
}

If, however, no previous tetrahedron that shares the side (i, j, k) has been
found, then (i, j, k) must be assigned a new index in the list of sides in the
entire mesh, and the side counter ”sides” must be incremented by 1:

if(runner->item.readMeshIndex(40+2*6+i) < 0)
runner->item.meshIndex(40+2*6+i) =

10 * nodes + 2 * edges + sides++;
}

}

Finally, the function also returns the total number of sides in the mesh:

return sides;
} // indexing the sides in the mesh

This completes the indexing of the sides in the entire mesh.

28.25 Computing Basis Functions

Here we define the constructor that produces the 56× 56 sparse matrix B
in Chapter 12, Section 12.31. For this, we use the function ”C()” defined in
Section 28.4.

Since the constructor must be a member function, it should first be declared
in the block of the ”sparseMatrix” class as follows:
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sparseMatrix(char*);

Note that the constructor takes a dummy string argument to distinguish it
from the default constructor. Here is the complete definition:

template<class T>
sparseMatrix<T>::sparseMatrix(char*){
item = new row<T>*[number = 56];
for(int i=0; i<number; i++)
item[i] = 0;

int J = -1;

Once the 56 rows have been initialized to be the zero pointers, the appropriate
matrix elements can be set in nested loops. The outer loop is over the 56
columns in the matrix. More precisely, since these columns correspond to the
points in the discrete tetrahedron T (5), the outer loop is actually a triple loop
over the triplets of the form (i, j, k) in this tetrahedron:

for(int i=0; i<=5; i++)
for(int j=0; j<=5-i; j++)
for(int k=0; k<=5-i-j; k++){
J++;

The integer ’J’ contains the index ĵi,j,k in Chapter 12, Section 12.31. Now, in
order to loop over the rows in the matrix, the first 40 rows are divided into
four groups of ten rows each, associated with partial derivatives evaluated at
the four corners of the unit tetrahedron. Each inner loop on a group of ten
rows is actually implemented as a triple loop on the points (l, m, n) ∈ T (2)

int I = -1;
for(int l=0; l<=2; l++)
for(int m=0; m<=2-l; m++)
for(int n=0; n<=2-l-m; n++){
I++;

The integer ’I’ contains the index îl,m,n in Chapter 12, Section 12.31.
The first ten rows are associated with partial derivatives evaluated at the

origin (0, 0, 0). Clearly, the (n, m, l)th partial derivative vanishes at x = y =
z = 0 for every monomial, except for the monomial xnymzl, for which its
value is the scalar n!m!l!:

if((i==l)&&(j==m)&&(k==n)){
T coef = factorial(i) * factorial(j) *

factorial(k);
if(item[I])

item[I]->append(coef,J);
else
item[I] = new row<T>(coef,J);

}
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Furthermore, the next ten rows are associated with partial derivatives eval-
uated at the corner (1, 0, 0). Clearly, at this corner, the (n, m, l)th partial
derivative is nonzero only for monomials that their y-power is exactly m,
their z-power is exactly l, and their x-power is at least n:

if((i==l)&&(j==m)&&(k>=n)){
T coef = factorial(i) *

factorial(j) * C(k,n);
if(item[10+I])
item[10+I]->append(coef,J);

else
item[10+I] = new row<T>(coef,J);

}

Similarly, the next ten rows are associated with partial derivatives evaluated
at the corner (0, 1, 0). Clearly, at this corner, the (n, m, l)th partial derivative
is nonzero only for monomials that their x-power is exactly n, their z-power
is exactly l, and their y-power is at least m:

if((i==l)&&(j>=m)&&(k==n)){
T coef = factorial(i) *

C(j,m) * factorial(k);
if(item[20+I])
item[20+I]->append(coef,J);

else
item[20+I] = new row<T>(coef,J);

}

Similarly, the next ten rows are associated with partial derivatives evaluated
at the corner (0, 0, 1). Clearly, at this corner, the (n, m, l)th partial derivative
is nonzero only for monomials that their x-power is exactly n, their y-power
is exactly m, and their z-power is at least l:

if((i>=l)&&(j==m)&&(k==n)){
T coef = C(i,l) * factorial(j) *

factorial(k);
if(item[30+I])
item[30+I]->append(coef,J);

else
item[30+I] = new row<T>(coef,J);

}
}

This completes the first 40 rows in the matrix.
In the above code, each ten consecutive rows in the constructed sparse ma-

trix are ordered according to the lexicographical ordering of partial derivatives
of order at most 2: x-, xx-, y-, yx, yy, z-, zx, zy-, and zz-partial derivatives.
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However, the above code can be modified to produce a more useful row order-
ing, in which the first partial derivatives appear before the second ones: x-,
y-, z-, xx-, yx-, yy-, zx-, zy-, and zz-partial derivatives. For this, the above
inner triple loop should be modified to read

int I = -1;
for(int q=0; q<=2; q++)
for(int l=0; l<=2; l++)
for(int m=0; m<=2-l; m++)
for(int n=0; n<=2-l-m; n++)
if(l+m+n==q){
I++;

...

and the rest is as before.
The next 12 rows are associated with the two normal derivatives evaluated

at the six midpoints of the six edges of the unit tetrahedron. In order to define
these rows, we use the function ”power()” in Chapter 14, Section 14.2, and
the results in Chapter 12, Section 12.24.

The first two rows correspond to the y- and z-partial derivatives evaluated
at (1/2, 0, 0):

if((i==0)&&(j==1)){
T coef = 1. / power(2,k);
if(item[40])

item[40]->append(coef,J);
else
item[40] = new row<T>(coef,J);

}
if((i==1)&&(j==0)){
T coef = 1. / power(2,k);
if(item[41])

item[41]->append(coef,J);
else
item[41] = new row<T>(coef,J);

}

Similarly, the next two rows correspond to the x- and z-partial derivatives
evaluated at (0, 1/2, 0):

if((i==0)&&(k==1)){
T coef = 1. / power(2,j);
if(item[42])

item[42]->append(coef,J);
else
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item[42] = new row<T>(coef,J);
}
if((i==1)&&(k==0)){
T coef = 1. / power(2,j);
if(item[43])

item[43]->append(coef,J);
else
item[43] = new row<T>(coef,J);

}

Similarly, the next two rows correspond to the x- and y-partial derivatives
evaluated at (0, 0, 1/2):

if((j==0)&&(k==1)){
T coef = 1. / power(2,i);
if(item[44])

item[44]->append(coef,J);
else
item[44] = new row<T>(coef,J);

}
if((j==1)&&(k==0)){
T coef = 1. / power(2,i);
if(item[45])

item[45]->append(coef,J);
else
item[45] = new row<T>(coef,J);

}

Furthermore, the next two rows correspond to the edge midpoint (1/2, 1/2, 0).
The normal derivatives at this point are the z-partial derivative and the sum
of the x- and y-partial derivatives, divided by

√
2 (see Chapter 12, Section

12.24):

if(i==1){
T coef = 1. / power(2,j+k);
if(item[46])

item[46]->append(coef,J);
else
item[46] = new row<T>(coef,J);

}
if(!i&&(j||k)){
T coef = (j+k) / sqrt(2.) / power(2,j+k-1);
if(item[47])

item[47]->append(coef,J);
else
item[47] = new row<T>(coef,J);

}
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Similarly, the next two rows correspond to the edge midpoint (1/2, 0, 1/2).
The normal derivatives at this point are the y-partial derivative and the sum
of the x- and z-partial derivatives, divided by

√
2:

if(j==1){
T coef = 1. / power(2,i+k);
if(item[48])

item[48]->append(coef,J);
else
item[48] = new row<T>(coef,J);

}
if(!j&&(i||k)){
T coef = (i+k) / sqrt(2.) / power(2,i+k-1);
if(item[49])

item[49]->append(coef,J);
else
item[49] = new row<T>(coef,J);

}

Similarly, the next two rows correspond to the edge midpoint (0, 1/2, 1/2).
The normal derivatives at this point are the x-partial derivative and the sum
of the y- and z-partial derivatives, divided by

√
2:

if(k==1){
T coef = 1. / power(2,i+j);
if(item[50])

item[50]->append(coef,J);
else
item[50] = new row<T>(coef,J);

}
if(!k&&(i||j)){
T coef = (i+j) / sqrt(2.) / power(2,i+j-1);
if(item[51])

item[51]->append(coef,J);
else
item[51] = new row<T>(coef,J);

}

The final four rows correspond to midpoints of sides of the unit tetrahedron. In
particular, the next row corresponds to the normal derivative (or the z-partial
derivative) at (1/3, 1/3, 0):

if(i==1){
T coef = 1. / power(3,j+k);
if(item[52])

item[52]->append(coef,J);
else
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item[52] = new row<T>(coef,J);
}

Furthermore, the next row correspond to the normal derivative (or the y-
partial derivative) at (1/3, 0, 1/3):

if(j==1){
T coef = 1. / power(3,i+k);
if(item[53])

item[53]->append(coef,J);
else
item[53] = new row<T>(coef,J);

}

Similarly, the next row corresponds to the normal derivative (or the x-partial
derivative) at (0, 1/3, 1/3):

if(k==1){
T coef = 1. / power(3,i+j);
if(item[54])

item[54]->append(coef,J);
else
item[54] = new row<T>(coef,J);

}

Finally, the last row corresponds to the midpoint of the largest side of the
unit tetrahedron, at (1/3, 1/3, 1/3). The normal derivative at this point is the
sum of the x-, y-, and z-partial derivatives, divided by

√
3 (see Chapter 12,

Section 12.24):

if(i||j||k){
T coef = (i+j+k) / sqrt(3.) / power(3,i+j+k-1);
if(item[55])

item[55]->append(coef,J);
else
item[55] = new row<T>(coef,J);

}
}

} // construct the 56*56 matrix B

This completes the definition of the 56× 56 matrix B in Chapter 12, Section
12.31. Once the linear system

Bx = I(q)

is solved for the vector of unknowns x, the basis function pq can be produced
from x by the following function:
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template<class T>
const polynomial<polynomial<polynomial<T> > >
producePolynomial(const dynamicVector<T>&x){
polynomial<T> zero(1,0.);
polynomial<polynomial<T> > Zero(1,zero);
polynomial<polynomial<polynomial<T> > > p(6,Zero);
int J = -1;
for(int i=0; i<=5; i++){
polynomial<polynomial<T> > A(6-i,zero);
for(int j=0; j<=5-i; j++){
polynomial<T> a(6-i-j,0.);
for(int k=0; k<=5-i-j; k++){
J++;
a(k) = x[J];

}
A(j) = a;

}
p(i) = A;

}
return p;

} // produce a polynomial of degree 5 from x

Indeed, in this function, the coefficients ai,j,k that are listed in x in the
lexicographical order are placed in their proper places in the polynomial of
three variables returned by the function. This can be tested in the following
”main()” function, which prints all the 56 degrees of freedom of pq:

int main(){
sparseMatrix<double> B("56");
dynamicVector<double> Iq(56,0.);
Iq(55) = 1.;
dynamicVector<double> x = solve(B,Iq);
polynomial<polynomial<polynomial<double> > >
pq = producePolynomial(x);

for(int i=0; i<=2; i++)
for(int j=0; j<=2-i; j++)
for(int k=0; k<=2-i-j; k++){
print(d(pq,k,j,i)(0.,0.,0.));
print(d(pq,k,j,i)(1.,0.,0.));
print(d(pq,k,j,i)(0.,1.,0.));
print(d(pq,k,j,i)(0.,0.,1.));
printf("\n");

}
print(d(pq,0,1,0)(.5,0.,0.));
print(d(pq,0,0,1)(.5,0.,0.));
print(d(pq,1,0,0)(0.,.5,0.));
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print(d(pq,0,0,1)(0.,.5,0.));
print(d(pq,1,0,0)(0.,0.,.5));
print(d(pq,0,1,0)(0.,0.,.5));
printf("\n");
print(d(pq,0,0,1)(.5,.5,0.));
print((d(pq,1,0,0)(.5,.5,0.)+

d(pq,0,1,0)(.5,.5,0.))/sqrt(2.));
print(d(pq,0,1,0)(.5,0.,.5));
print((d(pq,0,0,1)(.5,0.,.5)+

d(pq,1,0,0)(.5,0.,.5))/sqrt(2.));
print(d(pq,1,0,0)(0.,.5,.5));
print((d(pq,0,0,1)(0.,.5,.5)+

d(pq,0,1,0)(0.,.5,.5))/sqrt(2.));
printf("\n");
print(d(pq,0,0,1)(1./3.,1./3.,0.));
print(d(pq,0,1,0)(1./3.,0.,1./3.));
print(d(pq,1,0,0)(0.,1./3.,1./3.));
print((d(pq,0,0,1)(1./3.,1./3.,1./3.)

+d(pq,0,1,0)(1./3.,1./3.,1./3.)
+d(pq,1,0,0)(1./3.,1./3.,1./3.))/sqrt(3.));

return 0;
}

28.26 Setting Dirichlet Conditions

The Dirichlet matrix is obtained from the Neumann matrix A by eliminat-
ing the Dirichlet unknowns, that is, the unknowns whose values are already
available (Chapter 27, Section 27.5). In order to produce this matrix, we need
to add two member functions to the ”row” class.

The purpose of these functions is to drop row elements that lie in columns
that correspond to the Dirichlet unknowns. These unknowns are specified in
a vector of integers (named ”mask”) passed to the functions by reference.
In this vector, nonzero components indicate Dirichlet unknowns that should
be eliminated, whereas zero components indicate meaningful unknowns that
should be solved for.

Here is how the two new functions should be declared in the block of the
”row” class:

template<class S>
const S maskTail(const dynamicVector<int>&,

const dynamicVector<S>&);
template<class S>
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const S maskAll(const dynamicVector<int>&,
const dynamicVector<S>&);

Note that the functions use not only the template ’T’ of the ”row<T>” class
but also the template ’S’, which may be different from ’T’. It is assumed,
though, that ’T’-times-’S’ is a legitimate operation. In most applications, ’T’
and ’S’ are both scalars. In more advanced applications, however, such as in
the Helmholtz matrix, ’T’ can be interpreted as ”matrix2”, whereas ’S’ is
interpreted as ”point”.

The function ”maskTail” defined below considers the “tail” of the current
row object (from the second element onward). More precisely, the function
drops every element in this tail that lies in a column for which the vector
of integers ”mask” that is passed to the function by reference has a nonzero
component. Furthermore, the function also returns the sum of the products
of each dropped element times the corresponding component in the vector ’f’
that is passed to the function by reference.

template<class T>
template<class S>
const S row<T>::maskTail(

const dynamicVector<int>& mask,
const dynamicVector<S>&f){

S sum = 0.;
if(next){

In order to drop an element, it is not a good idea to use the ”dropFirstItem”
function inherited from the base ”linkedList” class, because this function
would never drop the last element in the row. A better idea is to use a “look
ahead” strategy and consider the next row element (the first element in the
tail). This is indeed done in the following ”if” question:

if(mask[(*next)().getColumn()]){

If the next row element (the second element in the row, or the first element
in the tail) should indeed drop, then this ”if” block is entered, and the ele-
ment drops by a call to the ”dropNextItem” function inherited from the base
”linkedList” class:

sum = (*next)().getValue() *
f[(*next)().getColumn()];

dropNextItem();

This way, the second row element drops, and its place is occupied by the
third row element, which becomes now the second row element. Thus, we
have a new (shorter) tail, which stretches from the (new) second row element
onward. The function is now applied recursively to this new tail to consider
the elements in it for dropping:
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sum += maskTail(mask,f);
}

If, on the other hand, the first element in the original tail (the second element
in the original row) should not drop (because the corresponding component
in the vector ”mask” vanishes), then the above procedure should be applied
to a yet shorter tail that starts from the third row element onward. This is
done by applying the function recursively to the content of the ”next” field
inherited from the base ”linkedList” class, not before its type is converted
explicitly from mere pointer-to-linked-list to concrete pointer-to-row:

else
sum = (*(row<T>*)next).maskTail(mask,f);

}
return sum;

} // mask tail

The ”maskTail” function is now used in the ”maskAll” function below to
consider for dropping not only the tail but also the first row element:

template<class T>
template<class S>
const S row<T>::maskAll(

const dynamicVector<int>& mask,
const dynamicVector<S>&f){

S sum = maskTail(mask,f);

This call considers for dropping all the elements except of the first one. Now,
the first row element is considered for dropping too, unless it is the only
element left, which never happens in practice:

if(next&&mask[getColumn()]){
sum += getValue() * f[getColumn()];
dropFirstItem();

}
return sum;

} // mask all row elements

The above function is now used in the function ”setDirichlet”, which produces
the Dirichlet matrix. As a member of the ”sparseMatrix” class, this function
must be declared in the block of this class:

template<class S>
void setDirichlet(dynamicVector<S>&,

dynamicVector<int>&);

This function not only changes the current ”sparseMatrix” object from the
Neumann matrix to the Dirichlet matrix, but also sets its first argument,
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the nonconstant vector ’f’, to be the required right-hand side of the spline
problem. Indeed, ’f’ is changed throughout the function from its initial value

f =
(

0
fN

)
to its final value

f =
(
−AQNfN

fN

)
.

The second argument passed to the function by reference, the vector of
integers ”Dirichlet”, plays the same role as the vector of integers ”mask”
above. In fact, it is assumed that it contains nonzero components for available
Dirichlet unknowns, and zero components for meaningful unknowns.

As before, the templates ’T’ and ’S’ may be different from each other. Still,
it is assumed that ’T’-times-’S’ is a valid operation.

template<class T>
template<class S>
void sparseMatrix<T>::setDirichlet(

dynamicVector<S>&f,
dynamicVector<int>&Dirichlet){

for(int i=0; i<number; i++){
if(!Dirichlet[i])

Here the block AQN in Chapter 27, Section 27.4, drops, and fQ takes its
correct value fQ = −AQNfN :

f(i) -= item[i]->maskAll(Dirichlet,f);
else

Here, on the other hand, ANQ drops, and ANN is set to the identity matrix
of order |N |:

*item[i] = row<T>(1.,i);
}

} // set Dirichlet matrix
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